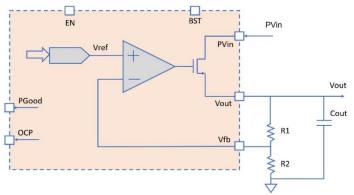
Low-Dropout (LDO) Regulator

Power Component: C710_B, C711_B

Product Description

The C710_B/C711_B Power Component is a customizable Low-Dropout Voltage Regulator with standard source-side regulation. Combine the C710_B/C711_B component with other Power Components to create a highly integrated, custom-defined, AnDAPT AmP™ on-demand power management device.

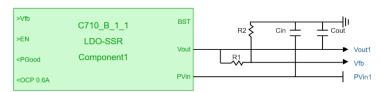

Features

- Linear, constant voltage, low-dropout regulator
- Adjustable Vout
 - o C710_B: From 0.6V to 3.3V
 - C711_B: From 0.6V to 1.8V
- Maximum output current: 1A with "Internal" feedback and 3A with "External" feedback
- 1% typical line and load regulation
- Very low dropout :100 mV dropout @ 0.1A
- Short-circuit protection (SCP)
- Protection: Overcurrent (OCP), and Over Temperature (OTP)
- Power-good and OCP flag outputs and Enable input
- Soft-Start
 - C710_B: CC soft-start with programmable softstart current
 - C711_B: CV soft-start with programmable softstart time
- –40°C to +125°C operating junction temperature
- · Utilizes one SIM element of an AmP Platform

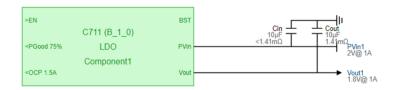
Applications

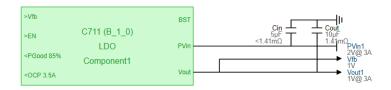
- Powering server, processor, memory, storage, network switcher and router platforms
- FPGA, processor, SSD, subsystem power control & sequencing
- Imaging: CMOS Sensors, Video ASICs
- Test and Measurement
- Regulated power noise sensitive, phase-locked loops (PLLs), voltage-controlled oscillators (VCOs), and PLLs with integrated VCOs

External Feedback with resistor divider (C710_B only)


C710_B vs C711_B Comparison Table

	С710_В	C711_B
Soft-Start	Constant-Current * *Soft-start current programmable	Constant-Voltage* *Soft-start time programmable
Vout Range	Internal F/B: 0.6V – 3.3V External F/B: 0.6V – 3.3V	Internal F/B: 0.6V – 1.8V External F/B: 0.6V – 1.8V


Figure 1: C710_B, C711_B application schematic C710 Internal Feedback


C710 External Feedback

C711 "Internal" Feedback

C711 "External" Feedback

Product Detail

The C710_B/C711_B is a 3A general purpose low-dropout (LDO) regulator. The maximum current is defined by the AmP device selected. The integrated current sense provides over-current protection (OCP) and short circuit protection.

The C710_B is designed to cover the voltage range (0.6V to 3.3V) while the C711_B covers the voltage range from 0.6V to 1.8V

The customizable output voltage is specified by the power engineer during customization using AnDAPT's cloud-based WebAmP™ development software. The C710_B/C711_B component has customizable control and status pins including an enable input, an optional power-good output, and optional output flag to signal when the system triggers an overcurrent (OCP) condition.

The C710_B/C711_B also incorporates a soft start feature to mitigate against inrush current. However, the C710_B implements a CC based soft-start with programmable soft-start current while the C711_B implements a CV based soft-start with a programmable soft-start time (from 0.5ms to 8.0ms). Sequencing options are available when used in conjunction with the C420 customizable Sequencer, by interconnecting signals EN, PGood to provide dependencies and delays between each sequence step.

The C710_B/C711_B has a minimum load requirement of 200uA.

VIN Headroom Requirements

The C710_B/C711_B is an NMOS based LDO with PV_{IN} requirements (LDO input voltage) as shown in Table2 V_{DO}. In addition there is a VIN headroom requirement (AMP chip supply voltage) above Vout for correct operation. This is typically 3V for LDO Vout values up to 2.5V and 5.5V for Vout values above 2.5V. This means, for example, for 5V

VIN applications (i.e. 5V +/- 10%) the largest C710_B/C711_B Vout that can be used is 1.5V. However there are applications solutions which may be applied to address this e.g. charge-pump approaches to boost the VIN voltage. For further information please also refer to Application Note 210202 ("LDOs and Load-Switches Implementation in 5V input applications on AmP8DB6 - Platform-B").

Maximum Current, IOUT

Part number	AmP Platform	IOUT Max	VOUT Max
C710 (Internal f/b)	AmPxDB6	1A	3.3V
C710 (External f/b)	AmPxDB6	3A	3.3V
C711 (Internal f/b)	AmPxDB6	1A	1.8V
C711 (External f/b)	AmPxDB6	3A	1.8V

Recommended Capacitance

Item	Cout	Cin
C710 Internal (0-1A)	>=10uF	>=Cout
C710 External f/b (0-1A)	>=22uF	>=Cout
C710 External f/b (1-3A)	>=47uF	>=Cout
C711 Internal (0-1A)	>=10uF	>=Cout
C711 External f/b (0-1A)	>=22uF	>=Cout
C711 External f/b (1-3A)	>=47uF	>=Cout

Note: Output capacitor of previous converter (if used) counts as part of Cin for LDO. If that capacitor is far from the optimum location of Cin, then add $1\mu F$ local capacitor close to PV_{IN} pin of LDO.

Customizable Options

<u>Table 1</u> lists the various customizable options for the C710 Power Component.

These options are set in the WebAmp development software.

Table 1: C710 Customizable Options

Option	Units
Input voltage	V
Output voltage	V
Output Current	Α
Enable OCP output to signal when overcurrent protection is triggered	On/Off
Use optional PGood output to signal "power good"	On/Off
Soft-Start Current (C710 only)	Α
Soft-Start Time (C711 only)	ms

System Characteristics

Table 2 lists the system characteristics for the C710_B/C711_B Power Component when implemented in an AnDAPT AmP device.

Table 2: C710 B. C711 B System Characteristics

Parameters	Min	Тур	Max	Units
Input Drain Voltage (PV _{IN}) *	V _{OUT} +		17	V
VIN Headroom ** Vout ≤ 2.5V Vout > 2.5V		3V 5.5V		
Output Voltage (Vout) C710	0.6		3.3	V
Output Voltage (Vout) C711	0.6		1.8	V
Output Current (I _{OUT}) Internal f/b External f/b Dropout Voltage (V _{DO})			1 3	A A
C710/C711 Internal f/b Iout = 0.1A Internal f/b Iout = 1A External f/b Iout = 0.1A External f/b Iout = 1A External f/b Iout = 3A		50 100 50 100 250	100 200 100 200 400	mV mV mV mV
O/P Accuracy lout = 0.2mA***			1%	
Load regulation – Internal f/b		16		mV/A
Load regulation – External f/b		4		mV/A
Line regulation (ΔVout/ΔPVin)		0.5		%
Current Limit – OCP	1			Α

^{*}Note: The maximum power dissipation for the C710_B,/C711_B, $(PV_{IN}-V_{OUT})^*I_{OUT}$, is limited to 1.5W

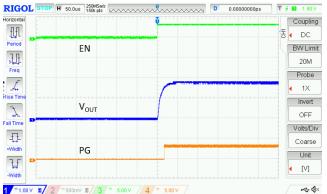
Port Name Table

available for

Port Name	Analog/	Input/	Description
	Digital	Output	
PVIN	Analog	I/P	LDO Analog I/P
V _{OUT}	Analog	O/P	LDO O/P
Vfb	Analog	I/P	Feedback I/P from O/P resistor divider
BST	Analog	I/P	Bootstrap I/P. This pin should be left floating. [+refer to Figure 1]
EN	Digital	I/P	Enable I/P. HIGH => LDO Enabled LOW => LDO Disabled
Pgood	Digital	O/P	Power Good indicator. HIGH => Vout > Pgood level
OCP	Digital	O/P	Over Current Indicator HIGH => O/P Current exceeds OCP level


^{**:} Please refer to the datasheet section "VIN Headroom Requirements" on pg.2

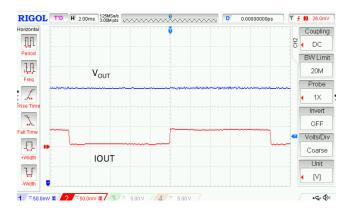
^{***} For Vout > 2.5V Accuracy will fall to 2%


Typical Characteristics

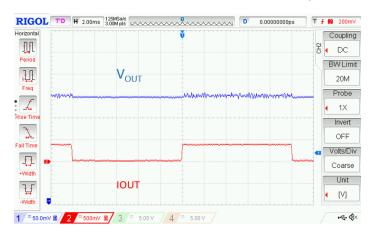
Unless otherwise specified: VIN=12V; TA = 25°C

Soft Start C710 PVIN = 2V, VOUT = 1.8V No load

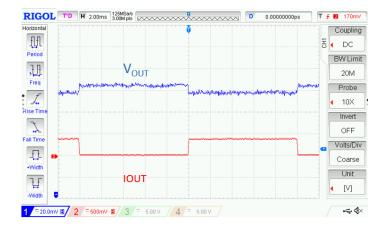
Soft Start C710 PVIN = 2V, VOUT = 1.8V, 2 Ohm


Soft Start C711 0.5ms Soft-Start Time

Soft Start C711 7.0ms Soft-Start Time



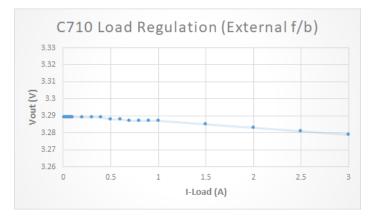
Transient Response C710_B, C711_B $PV_{IN} = 1.8V$, $V_{OUT} = 1.5V$ $I_{OUT} = 0$ to 100 mA Load step


Transient Response C710_B, C711_B

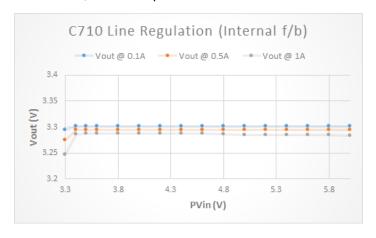
 $PV_{IN} = 1.8V$, $V_{OUT} = 1.5V$ $I_{OUT} = 0$ to 0.5A Load step

Transient Response C710_B, C711_B

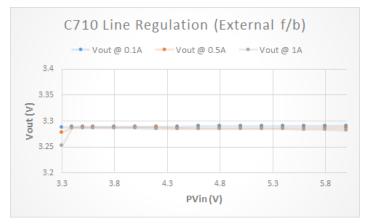

PV_{IN} = 1.8V, V_{OUT} = 1.5V I_{OUT} = 0 to 1A Load step


Load Regulation C710_B

 $V_{OUT} = 3.3V$, $Cout = 10 \mu F$


Load Regulation C710_B

 $V_{OUT} = 3.3V$, $Cout = 47\mu F$

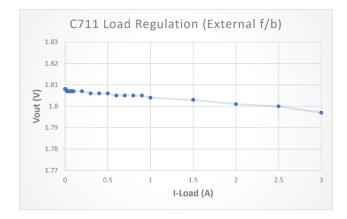

Line Regulation C710_B

 $V_{OUT} = 3.3V$, $Cout = 10 \mu F$

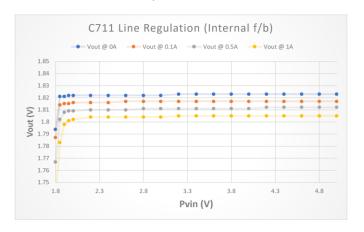
Line Regulation C710_B


 $V_{OUT} = 3.3V$, $Cout = 47\mu F$

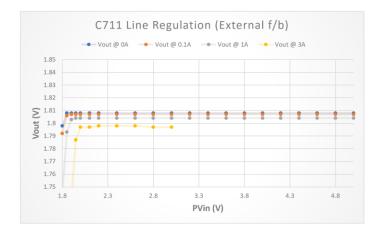
AnDAPT


Load Regulation C711_B

 $V_{OUT} = 1.8V$, $Cout = 10 \mu F$


Load Regulation C711_B

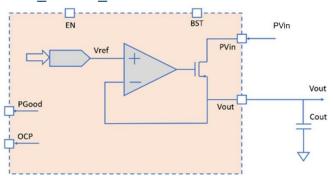
 $V_{OUT} = 1.8V$, $Cout = 47\mu F$


Line Regulation C711_B

 $V_{OUT} = 1.8V$, $Cout = 10\mu F$

Line Regulation C711_B

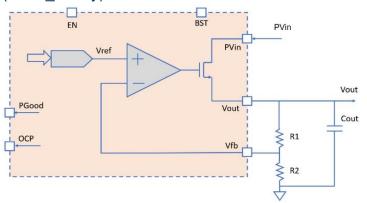
 $V_{OUT} = 1.8V$, $Cout = 47\mu F$



Theory of Operation


The C710_B/C711_B is a linear voltage regulator. It consists of a reference voltage, a feedback path for the output voltage (which may use a resistor divider) to compare it to the reference, a feedback amplifier, and a series pass transistor (NMOS in the case of the C710_B/C711_B), whose voltage drop is controlled by the amplifier to maintain the output at the required value.

The C710_B/C711_B offers two configurations, Internal feedback and External feedback. External feedback configuration requires the use of a Vfb pin to sense the Vout voltage and offers the best load regulation performance at ~4mV/A as well as operating up to 3A output current while the Internal feedback configuration eliminates the need for a Vfb pin but provides lower load regulation at ~16mV/A and operates up to 1A output current. Block diagrams are shown below:


C710 B/C711 B Internal Feedback

C710_B/C711_B External Feedback

External Feedback with resistor divider (C710 B only)

If the load current increases causing the output to drop the error voltage will increase and the amplifier output will fall. This in turn causes the voltage across the pass transistor to decrease and the output will return to its original value. Note that a linear regulator efficiency depends on the voltage difference between input and output and is nominally given by:

100 x (Vout x Iout)/(Vin x Iin)

= 100 x Vout / Vin assuming Iout = Iin

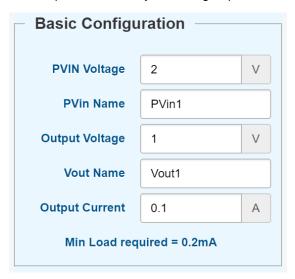
with the power loss being (VIN - VOUT) x lout.

The maximum power dissipation for the C710_B, C711_B is limited to 1.5W.

Protection Features

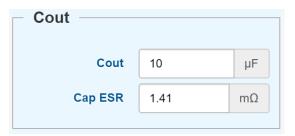
The C710_B/C711_B provides protection features including OCP and OTP. OCP can be enabled or disabled using the WebAmp interface.

Over Current Protection

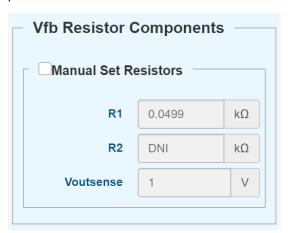

The Over Current Protection (OCP) digital port may be connected to a GPIO pin or a control component such as the C430 Digital Block Gate to indicate the output over current status. OCP goes high when output current, IoUT, is greater than the OCP threshold. OCP goes low when output current, IOUT, is less than the OCP threshold. On detection of OCP, the C710_B/C711_B will shut down. If OCP is triggered, the C710_B/C711_B will power down and PGood will go low. In that case, an EN cycling low-to-high, will restart the C710_B/C711_B with a new Soft Start cycle.

Thermal shutdown is provided to protect the regulator from excessive junction temperature. When the junction temperature reaches 125°C the device shuts down. On detection of OTP, the C710_B/C711_B will power down and PGood will go low. On OTP returning low, an EN cycling low-to-high, will restart the C710_B/C711_B with a new Soft Start cycle.

Feature Description


Basic Configuration

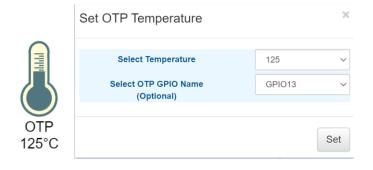
Default parameters may be changed per user requirement.


Cout Component Selection

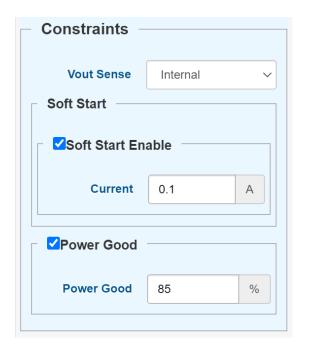
The minimum output capacitance for stability is 10 μ F. for internal feedback and 47 μ F for external feedback.

Vfb Resistor Components

C710: Resistor divider R1 and R2 default to 49.9 Ω and open (infinity) for direct feedback of the output to the Vfb pin.

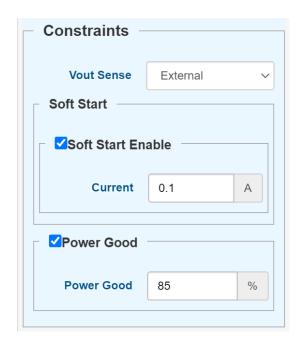

Fault Protection

Over Current Protection, OCP, indicates the output over current greater or less than OCP.

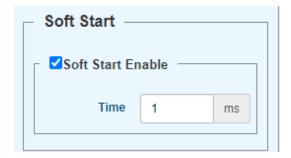


Over Temperature Protection (OTP):

Over Temperature Protection, OTP, indicates thermal shutdown has occurred. The OTP is set by default at 125 Deg C at the device level, routable to a GPIO.



Constraints, Internal Feedback



Constraints, External Feedback

Constraints (C711 Soft-Start)

Power Component Version Table

Power Component Name	Description
C710_B_1_2	Fixes issue in External mode when using a resistor divider
C710_B_1_1	Added "internal" configuration for low current (<1A) applications
C711_B_1_1	Fix timing issue in startup ramp counter
C710_B_1_0, C711_B_1_0	First Release on Platform B

1

1

C710_B Internal F/B Resource Usage

Circuit Stats... Number of AnD_Temp_Sensor 1 Number of AnD SIM Linear 1 Number of AnD_SIM_Protect 1 Number of AnD_SIM_Sense 1 Number of AnD Analog IO Number of AnD_ATC_IO 3 Number of AnD_ATC_Comp 3 Number of AnD Nref fix Number of AnD_PTG_Phase_Count Number of AnD_PTG_GBUF Number of AnD PTG OSC 1 Number of AnD DFFN 7 Number of AnD DFF 3 Number of LUT4 25 Resource Usage... io 3 used (Capacity 24) clb 6 used (Capacity 64) sim 1 used (Capacity 8) 2 used (Capacity 6) atc 3 used (Capacity 4) corner 1 used (Capacity 2) 25 used (Capacity 512) uLogic Components Stats... \$techmap\otp fuse module AnD DFF AnD DFFN 7 component_1 AnD_ATC_Comp 2 AnD_Nref_fix 3 AnD_SIM_Linear 1 AnD_SIM_Protect 1 AnD_SIM_Sense otp fuse module AnD_ATC_Comp

AnD_Nref_fix 1

C710_B External F/B Resource Usage

```
Circuit Stats...
       Number of AnD_Temp_Sensor 1
       Number of AnD_SIM_Linear
                                    1
       Number of AnD_SIM_Protect
                                    1
       Number of AnD_SIM_Sense
                                    1
       Number of AnD_Analog_IO
                                    6
       Number of AnD_ATC_IO
                                    4
       Number of AnD_ATC_Comp
                                    3
       Number of AnD_ATC_Summer
       Number of AnD_Nref_fix
       Number of AnD_PTG_Phase_Count
       Number of AnD PTG GBUF
       Number of AnD_PTG_OSC
       Number of AnD DFFN 7
       Number of AnD DFF
       Number of LUT4
                             26
Resource Usage...
       io
                4 used (Capacity
       clb
               6 used (Capacity 64)
               1 used (Capacity
       sim
               2 used (Capacity
                                6)
       atc
               3 used (Capacity
       corner
                                4)
               1 used (Capacity 2)
       ptg
               26 used (Capacity 512)
       uLogic
Components Stats...
       $techmap\otp_fuse_module
              AnD DFF
                            3
              AnD DFFN
                            7
       component 1
              AnD_ATC_Comp
AnD_ATC_Summer
                                   1
              AnD Nref fix 3
              AnD SIM Linear
                                   1
              AnD_SIM_Protect
                                   1
              AnD SIM Sense
                                   1
       otp_fuse_module
              AnD ATC Comp
                                   1
              AnD_Nref_fix
```

C711_B External F/B Resource Usage

C711 B Internal F/B Resource Usage Circuit Stats... Circuit Stats... Number of AnD_Temp_Sensor 1 Number of AnD_Temp_Sensor 1 Number of AnD_SIM_Linear Number of AnD SIM Linear Number of AnD_SIM_Protect 1 Number of AnD_SIM_Protect 1 Number of AnD_SIM_Sense 1 Number of AnD_SIM_Sense 1 Number of AnD_Analog_IO 6 Number of AnD_Analog_IO 6 Number of AnD_ATC_IO 4 Number of AnD ATC IO 3 Number of AnD_ATC_Comp 3 Number of AnD ATC Comp 3 Number of AnD_ATC_Summer Number of AnD PMT Number of AnD_PMT Number of AnD Nref fix Number of AnD_Nref_fix Number of AnD_PTG_Phase_Count Number of AnD PTG Phase Count 1 Number of AnD_PTG_GBUF 1 Number of AnD_PTG_GBUF Number of AnD_PTG_OSC 1 Number of AnD PTG OSC Number of AnD DFFN 7 Number of AnD DFFN 7 Number of AnD DFF 10 Number of AnD DFF 10 Number of LUT4 39 Number of LUT4 40 Resource Usage... Resource Usage... 3 used (Capacity 24) io io 4 used (Capacity 8 used (Capacity 64) clb clb 8 used (Capacity 64) 1 used (Capacity 16) pmt 1 used (Capacity 16) pmt 1 used (Capacity sim 1 used (Capacity sim 2 used (Capacity 6) atc 2 used (Capacity 6) atc 3 used (Capacity corner 4) 3 used (Capacity 4) corner 1 used (Capacity 2) ptg 1 used (Capacity ptg 39 used (Capacity 512) uLogic 40 used (Capacity 512) uLogic Components Stats... Components Stats... \$techmap\component_1 \$techmap\component_1 AnD_DFF AnD DFF \$techmap\otp fuse module \$techmap\otp_fuse_module AnD_DFF 3 AnD DFF 3 AnD DFFN 7 AnD_DFFN 7 component_1 component 1 AnD ATC Comp 2 AnD_ATC_Comp 2 AnD_Nref_fix AnD_ATC_Summer 1 AnD_PMT AnD Nref fix AnD SIM Linear AnD PMT AnD_SIM_Protect 1 AnD_SIM_Linear 1 AnD_SIM_Sense 1 AnD SIM Protect AnD_SIM_Sense otp_fuse_module AnD_ATC_Comp 1 otp_fuse_module AnD Nref fix 1 AnD ATC Comp 1 AnD Nref fix 1

Additional Resources

• AnDAPT AmP Platform datasheet

Revision History

Date	Revision
10/20/2022	Updated headroom requirements
05/24/2022	Added Recommended Capacitance, page 2 and updated Version Table Added dropout, V _{IN} headroom and load regulation to Specifications
07/12/2021	Updated COUT Component Selection
10/13/2020	Added Block Diagram to page 1
08/17/2020	Added C711_B
06/19/2020	Platform B, revision B release
07/05/2019	Added C710_A_2_0 conditions for Load Regulation and Constraints
11/27/2018	Preliminary release

www.AnDAPT.com

Trademarks

© 2022 AnDAPT, the AnDAPT logo, AmP, WebAmP, WebAdapter, AmPLink, AmPScope and other designated brands included herein are trademarks of AnDAPT, LLC in the United States and other countries. All other trademarks are the property of their respective owners.