PWM Single-Phase DrMOS Controller Power Component: C860_B, I860_B

Product Description

The C860_B Power Component is a customizable, single-phase, voltage-mode DrMOS controller designed for point-ofload (POL) applications. Combine the C860_B with other Power Components to create a custom-defined, AnDAPT AmP on-demand PMIC. The I860_B Power Component includes the C860_B Synchronous Buck and extends it with I2C communication for dynamic voltage scaling and current measurement.

Power components are software components, accessible through WebAmP[™], allowing users to create their own PMIC. The C860_B has been developed to interface with industry-standard DrMOS devices such as the 3.3 V compatible Vishay SiC645A or the Intersil/Renesas ISL99227 with 3.3V compatible tri-state PWM input. The DrMOS is a fully integrated power stage that integrates a high side and low side MOSFET and a high-performance driver with integrated bootstrap FET. Maximum output current will be based on the selected external DrMOS and on the thermal design of the specific application.

Features

- PWM, voltage mode, DrMOS controller
- Adjustable output voltage with down to 2.5 mV resolution
- 1% voltage accuracy
- Efficiency up to 94%
- Adjustable switching frequency 533 to 1000 kHz
- Adaptable bandwidth, gain & phase margin
- Adjustable protections: Input Undervoltage Lockout (ViUVLO), Output Undervoltage Lockout (VoUVLO), Overcurrent Protection (OCP), Overvoltage Protection (OVP), Over temperature Protection (OTP), Short-circuit Protection (SCP)
- Power-good flag output and Enable input
- Controller junction temperature range –40°C to +125°C
- Component included in the WebAmP[™] development tool

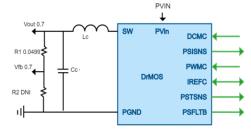
Applications

- On-demand power management, multi-rail power integration
- Powering server, processor, memory, storage, network switcher and router platforms
- FPGA, processor, SSD, subsystem power control & sequencing

Figure 1. C860_B Power Component

>VINFB		PWM>
>EN		CFP>
>VFB		PGood>
>ISENSE	C860_B_1_0 PWM SinglePhase DrMOS	OVP>
	Component2	OCP>
>PSFLT		OTP>
>IREF		UVLO>
>TSENSE		DCM>

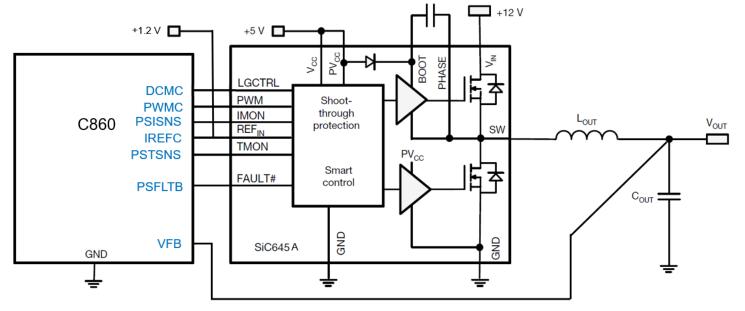
Product Detail


The C860_B Synchronous Buck controller power component symbol is shown in Figure 1. The controller drives a DrMOS integrated power stage with connections as shown in Figure 2 and described in the Pin Function and Description Table. A typical application diagram is shown in Figure 3.

Output voltage feedback is compared against an internal reference using a high-performance voltage-error digitizer that provides tight voltage regulation accuracy under transient conditions. Pulse-width modulated (PWM), voltage-mode regulation is implemented with PID compensation. The switching frequency is either generated internally via an oscillator with selectable frequencies or provided via an external pin.

The customizable output voltage is specified by the power engineer during customization using AnDAPT's cloud-based WebAmp development software. The C860_B component has customizable control and status pins including enable input, an optional power-good output, and optional output flags to signal when the system triggers an overvoltage (OVP), overcurrent (OCP), undervoltage lockout (UVLO), catastrophic DrMOS failure (CFP) or over temperature (OTP) condition. The threshold values are specified by the power engineer using the WebAmp tool.

Customizable soft-start and soft-stop slew rates are also specified by the power engineer using the WebAmp tool. Additional sequencing options are available when used in conjunction with the C420 Sequencer, by interconnecting signals EN and PGood to provide customizable dependencies and customizable delays between each sequence step.


Figure 2: DrMOS Interface

Pin Function and Description Table

Port Name	GPIO Name	SiC645 Name	I/O	Description
OVP			0	Over Voltage Protection fault flag for internal connection to AmP fault manager
OCP			0	Over Current Protection fault flag for internal connection to AmP fault manager
OTP			0	Over Temperature Protection fault flag for internal connection to AmP fault manager
UVLO			0	Input Under Voltage Lock Out fault flag for internal connection to AmP fault manager
PGood			0	Controller Power Good signal
CFP			0	Catastrophic Fault Protection fault flag for internal connection to AmP fault manager.
VINFB			I	Internal - Input voltage measurement for ViUVLO protection
TSENSE	PSTSNS	TMON	I	Temperature monitor input from DrMOS Power Stage to C860_B controller
PSFLT	PSFLTB	FAULT#	I	Open drain fault input pin from DrMOS Power Stage to C860_B controller.
ISENSE	PSISNS	IMON	I	Current monitor input from DrMOS Power Stage to C860_B controller.
IREF	IREFC	REFIN	I	Reference voltage connected to DrMOS power stage REFIN signal and to C860_B controller. Recommend using AmP auxiliary 1.2V LDO to drive the signal.
DCM	DCMC	LGCTRL	0	DrMOS power stage lower gate control signal output from DrMOS controller. Used for Discontinuous current mode operation for light load efficiency when available on the DrMOS.
EN			I	Enable DrMOS controller
PWM	PWMC	PWM	0	DrMOS power stage gate driver control signal output from DrMOS controller
VFB	Vfb		I	VOUT feedback for DrMOS controller

Figure 3: Typical Application Diagram

Electrical Characteristics

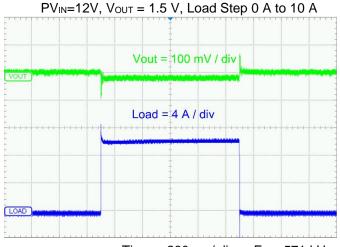
PV_{IN}= V_{IN}=12V, T_A=25°C, Cvdd=10µF, Cvcc=1µF, unless otherwise specified

Parameters	Test Conditions	Min	Тур	Max	Units
Output Voltage (Vout)		0.7		5.0	V
Output Voltage Regulation (Vouт)	Including load regulation and temperature variation V _{IN} range: 4.5V to 6V V _{IN} range: 6V to 14V	-2 -1		+1 +1	% %
Switching frequency (Fsw)		533		1000	kHz
Switching frequency accuracy		-5		+5	%
Max On Time	limited by either 85% of the period or period - 350ns, whichever is lower.			min((0.85/Fsw), (1/Fsw – 350ns))	ns
Efficiency	V _{IN} =12V, V _{OUT} =1.8V, F _{SW} =571kHz, Iout=10A		94		%
PROTECTION					
ViUVLO, input Undervoltage Lockout		4		10	V
OCP, Over Current Protection (% Ιουτ)			150		%
OTP, Over Temperature Protection for AmP device	Shutdown (Power Good goes low) Hysteresis		125		°C
OVP, Overvoltage Protection trip point range (relative to Vout Setting)	No resister divider on voltage feedback. If a resistor divider is used, these values will increase by a factor equal to the divider ration	+100		+432	mV
VoUVLO, output Undervoltage Lockout threshold range (relative to Vout Setting)	No resister divider on voltage feedback. If a resistor divider is used, these values will increase by a factor equal to the divider ration	-100		-432	mV
Power Good threshold (relative to Vout Setting)	No resister divider on voltage feedback. If a resistor divider is used, these values will increase by a factor equal to the divider ration	-100		-432	mV

* Parameters shaded in green are user customizable as set in WebAmP development software

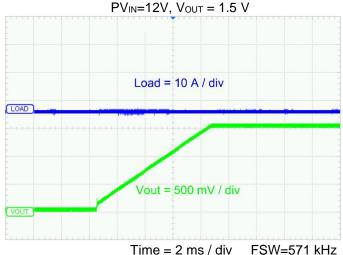
Digital GPIO Electrical Characteristics

$V_{\text{IN}}{=}12V$ and $T_{\text{A}}{=}25^{\circ}C$

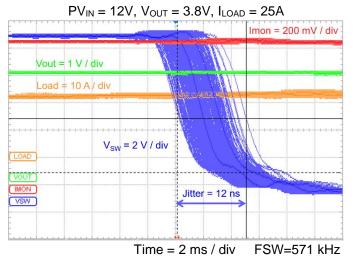

I/O	١	/ _{ccio} (V	')		Vı∟ (V)	Vih	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{ОН}
Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mA)
3.3 V	3.14	3.3	3.46	-0.3	0.8	2.0	V _{CCIO} + 0.2	0.4	Vccio – 0.5	2	-2

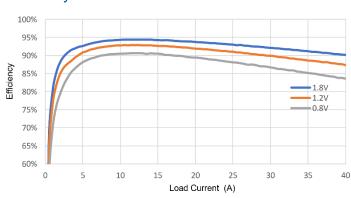
Efficiency

Typical Characteristics

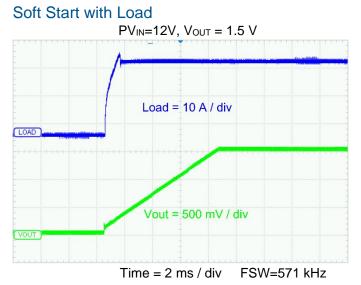

Unless otherwise specified: TA = 25°C

Transient Response

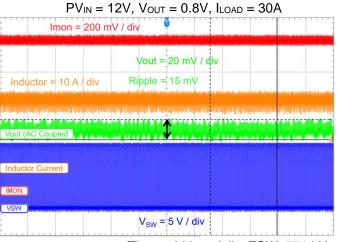



 $Time = 200 \ \mu s \ / \ div \qquad F_{sw} = 571 \ kHz$

Soft Start No Load



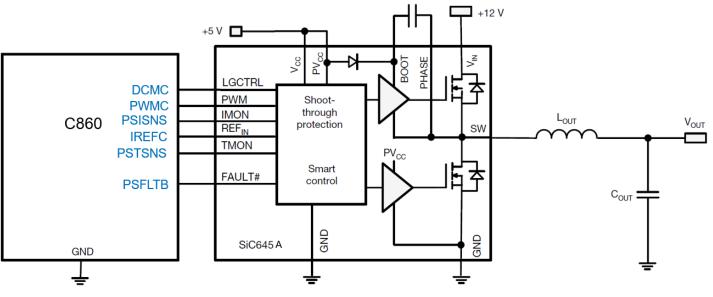
Jitter



PVin=12V, inductor=250nH, capacitor=564uF Fsw=571kHz

Ripple

Time = $200 \ \mu s / div FSW=571 \ kHz$


Theory of Operation

The C860_B Synchronous Buck Regulator with integrated MOSFETs operates in voltage mode by comparing the V_{OUT} feedback voltage, Vfb, with a programmable reference, Vref to direct the PID (Proportional Integral Derivative) controller to produce a PWM (Pulse Width Modulation) input to the Hiside and Lo-side MOSFET switches as shown in Figure 4.

In CCM (Continuous Conduction Mode), the PWM driver goes high turning the Hi-side switch "ON" to provide PV_{IN} to

Figure 4: Functional Block Diagram

the LX side of an inductor, L, where $V_L = V_{LX} - V_{OUT}$. When the PWM driver goes low, the Hi-side switch turns "OFF", and after a shoot through delay, the Lo-side switch turns "ON" providing a path for the inductor current to decrease with $V_L = -V_{OUT}$, until the next PWM turns back "ON". As this cycle repeats, the PID algorithm regulates V_{OUT} by continuously updating the PWM cycle to optimize ripple, regulation, and transient response over changing load conditions.

Start-up and Shutdown

Start-up and shutdown are controlled by the EN digital port which may be connected to a GPIO pin or a control component such as the C420 Sequencer. When EN goes high, the output voltage, V_{OUT}, will ramp up according to the Soft Start programmable preset ramp time in Parameter Settings. When EN goes low, the output voltage, V_{OUT}, will ramp down according to the Soft Start programmable preset ramp time in Parameter Settings.

PGood

The power-good, PGood, digital port may be connected to a GPIO pin or a control component such as the C420 Sequencer to indicate the output voltage regulation status. PGOOD goes high on power-up after completion of all the Soft Start time (Figure 5) and when all Faults are cleared. PGOOD will go low for faults such as ViUVLO, VoUVLO, OVP over voltage, OCP current limit, or OTP thermal shutdown. PGOOD will also go low if EN goes low.

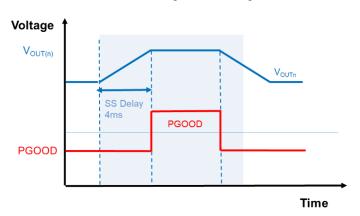


Figure 5 Soft Start PGOOD wavforms

Protection Features

The C860_B provides many protection features including ViUVLO, OVP, OCP and OTP.

ViUVLO

The PV_{IN} voltage Under Voltage Lockout, ViUVLO, digital port may be connected to a GPIO pin or a control component such as Digital Logic Block to indicate the PV_{IN} voltage status. ViUVLO flag stays low when PV_{IN} voltage is higher than the programmable preset condition in Parameter Settings. ViUVLO goes high when PV_{IN} voltage is less than the programmable preset condition in Parameter Settings. PVIN may be sensed on the GPIO pin connected to the PVINFB analog port which is resistor divided by a fixed 1/6 ratio of PVIN. On detection of ViUVLO, the C860_B will power down and PGood will go low. On ViUVLO returning low, the C860_B will restart with a new Soft Start cycle.

ViUVLO from Power Stage (DrMOS)

In addition to the standard protections which are implemented at the device level using other power components, the C860_B also includes other protection depending on the DrMOS used. When Hiccup options are selected, then the controller will shut down and automatically power up when the power stage fault has cleared.

OVP

The Over Voltage Protection, OVP, digital port may be connected to a GPIO pin or control component logic blocks to indicate the output voltage over voltage status. OVP goes high when output voltage, V_{OUT} , is higher than the

programmable preset condition in Parameter Settings. OVP goes low when output voltage, V_{OUT} , is less than the programmable preset condition in Parameter Settings. On detection of OVP, the C860_B will skip Hi-side switch pulses until OVP returns low.

OCP

The Over Current Protection, OCP, digital port may be connected to a GPIO pin or control component logic blocks to indicate the output over current status. When I_{OUT} , is greater than 150% of the Output Current setting, the C860_B will limit the Hi-side switch pulse width and OCP will go high.

OCP from Power Stage (DrMOS)

In addition to the standard protections which are implemented at the device level using other power components, the C860_B also includes other protection depending on the DrMOS used. When Hiccup options are selected, then the controller will shut down and automatically power up when the power stage fault has cleared.

OTP

Thermal shutdown is provided to protect the regulator from excessive junction temperature. When the junction temperature reaches 125°C the device shuts down. On detection of OTP, the C860_B will power down and PGood will go low. On OTP returning low, an EN cycling low-to-high, will restart the C860_B with a new Soft Start cycle.

Parameter Settings

Basic Configuration

Default parameters may be changed per user requirement.

 Basic Configuration 				
SW Freq	CK0 0.8 MHz 0° 🔻			
PVIN Voltage	12	v		
PVin Name	PVin1			
Output Voltage	1.2	v		
Vout Name	Vout1			
Vout Ripple	0.62	%		
Vout Overshoot	0.01	v		
Output Current	30	А		
lout Ripple	30	%		
lout Delta	10	A		

Vour ripple is computed as follows:

```
Vour ripple = Iripple/(8*Cour*Fsw)
```

LC Component Selection

Default values for Inductance, L, and output capacitance, Cout, are computed as follows:

L = (VIN-VOUT)* VOUT / (VIN *Fsw*Iripple)

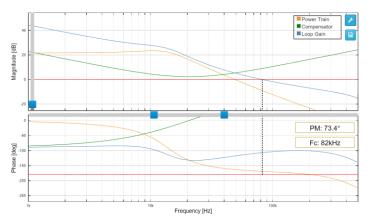
Cout = loutdelta^2*L/	(2*	Vout	*Vos)
-----------------------	-----	------	-------

LC Components						
Manual Set LC						
Inductor	0.15	μΗ				
Inductor DCR	10	mΩ				
Capacitor	625	μF				
Cap ESR	4	mΩ				
f _{LC} 16.4 kHz						

Inductor and Capacitor values may be changed by checking Manual Set LC or selecting the BoM tab where manufacturers part numbers may be selected.

Vfb Resistor Components

Feedback divider resistors R1 and R2 default to 49.9 Ω and open (infinity). When V_{OUT} is larger than 2.25V, a resistor divider ratio is computed to select 1% resistor values for both R1 and R2.


Manual Set R	esistors —	
R1	0.0499	kΩ
R2	Infinity	kΩ
Vfb	1.2	v

Controller

The controller compensation memory block provides PID compensation of error signals using the integrated compensation logic without external passives or an arithmetic unit. The user can adjust a bandwidth, a gain, and a phase margin of the compensation logic. For example, a user can interactively adjust the proportional gain Kp and the gains Fz1 and Fz2 shown below to effectively adjust the derivative and integral gains Kd and Ki as well as the bandwidth and the phase margin.

– Controller –		
Gain	400	
F _{z1}	8	kHz
F _{z2}	32	kHz
Ki	2.010619e+7	
Kd	1.989437e-3	

Gain, Fz1 and Fz2 are chosen to provide best Phase Margin and Crossover Frequency, Fc, as adjusted in the Bode Plot shown below:

Fault Protection

Input voltage Under Voltage Lockout, ViUVLO, indicates the input voltage status greater or less than programmable preset condition (default 4.5V). Output voltage Under Voltage Lockout, VoUVLO, indicates the output voltage status greater or less than programmable preset condition (default 75% of Vour). Over Voltage Protection, OVP, indicates output voltage status greater or less than the programmable preset condition (default 25% above Vout). Over Current Protection, OCP, indicates the output over current greater or less than the programmable preset condition. Over Temperature Protection, OTP, indicates thermal shutdown has occurred. (set to 125°C)..

Fault Protection							
Enable Input UVLO							
Input UVLO	5	V					
Output UVLO							
Output UVLO	0.9	V					
Cycle by cyc	✓Cycle by cycle current limit						
OCP Level	45	А					
✓Enable OVP							
OVP Level	1.5	V					
Enable OTP	Enable OTP						
Over Temperature	125						
OTP Shutdown							
OTP Hiccup							

Fault Protection Power Stage

In addition to the standard protection which are implemented at the device level using other power components, the C860_B also includes other protection depending on the DrMOS used. When Hiccup options are selected, then the controller will shut down and automatically power up when the power stage fault has cleared.

 Power Stage Fault Protection
Input UVLO
UVLO Shutdown
UVLO Hiccup
Over Current
OCP Shutdown
Over Temperature
OTP Shutdown 🗹
ОТР Ніссир

Constraints

Soft Start times of 1 to 16 milliseconds are programmable by the user as a parameter selection. The default is 8 milliseconds as shown. Power Good ranges 59% to 100% and default is 85%.

Constraints –		
Soft Start —		
Rise Time	8	ms
Power Good		
Power Good	85	%

I2C AmpScope Interface

AnDAPT WebAmp™	× +															٩	
	o.andapt.com/pro	jects												QĽ	7		
nDAPT™ ⊮	360_B → AmP8I	DB6QF65 - 🖸 Design	O Compile	🖋 AmPL	ink								Help -		٠	Û	
Installed A	mpLink v1.6.4.0	0-			//	/ / _					_/c	$\langle \cdot \rangle$	\bigcirc				
			AmPl	₋ink	Pro	gramm	ing Cor	ntrol	5								
🗹 Curi	rent Project Choo	se File No file chosen					AnDAP	T AMP8[06	V CS1	~ Progra	am & Verify					
AmPLink I	nterface	Controls					AmPS	Scop	e Int	erface	Э						
Function	Name	Control							Specif	fication		Actual	(I2C/DVS Se	ries Onl	у)		
	ENABLE	Out 0	Comp Name PC	POL#	Base	Part	Description	Rail				Target	Measured			Status	
SPI configuration	CFG	In 0			Addr	urt	Description		Voltage (V)	Current (A)	Enable	Voltage (V)	Current (A)	PGOOD			
FLASH control	WP	Out 0										(•)	(~)	B	OCP	OVP	
FLASH control	RST	Out 0	Component2	1	0x20	1860_B_2_0	PWM SinglePhase	Vout2	1.2	30	On	1.2		۲			
	CTRL	Out 0					DrMOS										
I2C & DVS control	ALERT	In 0							Update		Repeat			ОТР			
		Update															
					Ger	eral Purpos	e I2C Regis	ter Acc	ess								
			Register			Valu	ie		ł	Hex	Update						
			Write	0	0 0	0 0	0 0 0		00		Write						
			Read	0	0 0	0 0	0 0 0		00		Read						

The I860_B Power Component is a version of the C860_B with additional telemetry capabilities provided by the I2C interface including:

- Fault status for PGOOD, OCP, OVP and UVLO
- Current Measuring
- Voltage Margining Vout setting

The I2C commands are summarized Table 1. Note that the first I2C series Power Component will automatically insert one I480 I2C Controller Power Component with additional SDA and SCL signal pins. Additional I2C series Power Components will not insert an I480 as one I480 supports multiple I2C series Power Components. The I2C AmpScope Interface above provides a user interface to read and write the I2C commands for all the I2C series Power Components contained in the AmP device. When I2C enabled component is present in the design, users will be able to read several device and design parameters. Refer to "I2C Design and Usage Guide" for details on I2C register architecture and accessing I2C registers. The registers used for I860 component are shown in Table 1.

Current measuring is enabled by parameter setting below.

Register Address Format

The register address format for the Amp device is shown in Figure 6. The register address is an 8-bit number which can take on any value from 0x00 to 0xFF. The register space is divided in to eight pages, with page 0 dedicated to device-wide registers and pages 1 through 7 to support up to 7 POLs.

Figure 6 Amp I2C register address format

I2C Registe			er Addı	ressi	ing Met	hod		
	7	6	5	4	3	2	1	0
Page Number					Offset			
	Ра	ge Ta	ble		_			
	3'ł	0000	D	evice				
	3'ł	001	PC	DL1				
	3'b010 PC		DL2					
	3't	011	PC	DL3				
	א'צ	100	P	או <u>ר</u>				

 3'b100
 POL4

 3'b101
 POL5

 3'b110
 POL6

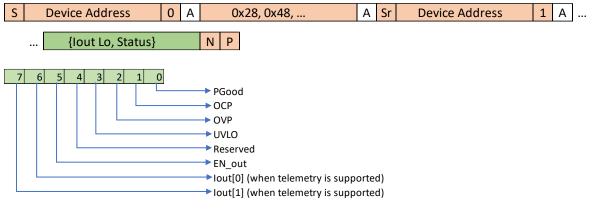
 3'b111
 POL7

I2C Write/Read Protocol

An Amp device is addressed by its pre-defined 7-bit device physical address (default address is 0x55). Along with the 7bit address, an 8th bit is added to the LSB position to identify whether the following transaction is a read or write, making it an 8-bit address byte. If the least significant bit of the address byte is zero, it is a write transaction whereas a 1 is a read transaction. The Amp device parameters as well as the read/write parameters of the different POLs in the device are accessed through 256 8-bit registers. Every I2C transaction to the Amp device therefore needs another 8-bit register address. The general format of I2C-Amp device write/read protocol is shown in Figure 7. Note that the Amp device is always the slave. In the figure, the shaded portion is sent by the master and the unshaded portion by the slave.

Figure 7 I2C read/write protocol

I2C write to the device


S Device Address	Wr A	Register Address	A	Write byte	e1 A	Write byte 2	AP
I2C read from the device	e						
S Device Address	Wr A	Register Address		A Sr	Device Address	Rd A	
Read byte	1	A Read byte 2	2	N P]		
Details of the bit notation	n						
S Start S	r Repea	ted Start P	Sto	р			
Wr Write Bit R	d Read	Bit					
A Ack N	I Nack						
	Data f	rom Master					
	Data f	rom Slave					

Both write and read transactions can be either a one byte or a multi-byte transfer. Accordingly, the register address is either the address of the register that is being accessed or the starting address of a sequence of registers that is being accessed. For a write transaction, the device updates write data to successive registers until it receives an I2C stop signal. For read transactions, the master first writes the starting address into the device and starts accepting read from the device after a repeated start signal. The device sends successive register data until the master issues a NACK for the last byte read.

Status Read (0x28, 0x48, ...)

Status read is a byte command and its format is shown in Figure 8. The address for status register is 0x28 for POL1 and 0x48,0x68,etc., for subsequent POLs.

Figure 8 Format of status read command

The PGood status and OCP, OVP and ViUVLO fault bits are packed into the status byte as shown in the figure. The fault bits are "sticky" in the sense that a fault, even if it is momentary, sets the bit high and that bit remains high even if the fault went away until the POL is read. All fault bits are all cleared when the next I2C read transaction happens from that POL. The EN_out status bit has not yet been implemented.

IOut Read (0x28, 0x48, ...)

The format of lout read is shown in Figure 9. lout read is a 2 byte read operation and it also reads the status bits. The address for lout register is 0x28 for POL1 and 0x48,0x68,etc., for subsequent POLs.

Figure 9 Format of lout read command

S	D	evice Address	0	А		0x28, 0x48,	А	Sr	Device Address	1	А	
	_											
		{lout Lo, Status}			Α	lout[9:2]		Ν	Р			

lout is read as a 10-bit coded value. The higher 8 bits of the code is in the second byte (0x29, 0x49, ...). The lower 2 bits of the lout code are contained in bits 6 and 7 of the first byte. The mapping of the first byte is as shown in Figure 8. For 1860, the output current lout is determined from the 10-bit code using the following expression:

lout (in Amperes) = $0.128 * lout_code - 0.725$

Component Enable (0x30, 0x50, ...)

Component Enable is a byte command and its format is shown in Figure 10Figure . Bit 0 of the command byte controls component enable, with a zero being enable and a 1 disable. Bit 1 is used to define enable mode, but it is not currently implemented. The component is enabled when both the direct EN pin into the component is high and its I2C enable bit is zero. All the I2C write and read transactions are valid even when the component is disabled.

Figure 10 Format component enable command

S Device Address 0 A 0x30, 0x50, A Component Enable

Vout Set (0x32, 0x52, ...)

The format of the Vout (output voltage) set command is shown in Figure 11**Error! Reference source not found.**. The a ddress for Vout register is 0x32 for POL 1 and 0x52, 0x72, etc., for the subsequent POLs. Vout set value is a 10-bit coded quantity proportional to the output voltage to be set. The lower 8 bits of the Vout code is set to the first Vout register (0x32, 0x52,...) and the upper 2 bits are set to the lower 2 bits of the second Vout register (0x33, 0x53,...). Note that Vout must be set as a word by issuing a 2 byte write command. The Vout code to voltage relationship for platform B Amp devices is as given below.

Vout (in volts) = Vout_code * 2.5 / 1000

The Vout setting is for the output voltage factored by the voltage divider, if any. In other words, Vout set actually sets the feedback voltage.

Figure 11 Format of Vout set command

S Device Address 0 A 0x32, 0x52, A Vout[7:0] A {6'hxx,Vout[9:8]} A F
--

Table 1: I2C Register Map

Address*	Register Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0x28	STATUS, lout (hi)	lout[1]	lout[0]			UVLO	OVP	OCP	PGood
0x29	lout (lo)	lout[9]	lout[8]	lout[7]	lout[6]	lout[5]	lout[4]	lout[3]	lout[2]
0x30	ENABLE								ENB
0x32	Vout (lo)	Vout[7]	Vout[6]	Vout[5]	Vout[4]	Vout[3]	Vout[2]	Vout[1]	Vout[0]
0x33	Vout (hi)							Vout[9]	Vout[8]

* Address page+offset methodology as in Figure 8. ** Slave Address can be set in I480 Module

Additional Information DrMOS

For additional information see DrMOS supplier datasheets such as the SiC645A DrMOS recommended for use with C860_B.

Pin Name	I/O	Description
LGCTRL	Ι	Lower gate control signal input. LO = GL LO (LFET off). HI = normal operation (GL and GH strictly obey PWM). This pin should be driven with a logic signal, or externally tied high if not required; it should not be left floating
FAULT#	0	Open drain output pin. Any fault (over-current, over-temperature, shorted HFET, or POR / UVLO) will pull this pin to ground. This pin may be connected to the controller enable pin or used to signal a fault at the system level.
PWM	I	PWM input of gate driver, compatible with 3.3 V tri-state PWM signal.
REFIN	I	Input for external reference voltage for IMON signal. This voltage should be between 0.8 V and 1.6 V. Connect REFIN to the appropriate current sense input of the controller. Place a high quality low ESR ceramic capacitor (~ 0.1 μ F) in close proximity from this pin to GND.
IMON	0	Current monitor output referenced to REFIN. IMON will be pulled high (to REFIN +1.2 V) to indicate an HFET shorted or over-current fault. Connect the IMON output to the appropriate current sense input of the controller. No more than 56 pF capacitance can be directly connected across IMON and REFIN pins. With a 100 Ohm series resistor, up to 470 pF may be used.
TMON	0	Temperature monitor output. TMON will be pulled high (to 2.5 V) to indicate an over- temperature fault. No more than 250 pF total capacitance can be directly connected across TMON and GND pins; with a series resistor, a higher capacitance load is allowed, such as 1 kohm for 100 nF load.

C860_B, I860_B

C860_B Resource Usage

```
Circuit Stats...
Circuit Stats...
     Number of AnD Temp Sensor
                                   1
     Number of AnD ADi dual
                                    1
     Number of AnD ATC IO
                                    8
     Number of AnD ATC Comp
                                   4
     Number of AnD ATC Summer
                                   1
     Number of AnD PMT
                                    3
     Number of AnD CM PID
                                    2
     Number of AnD Nref dyn
                                   1
     Number of AnD Nref fix
                                  4
     Number of AnD_PTG_Phase_Count 1
     Number of AnD PTG GBUF 1
     Number of AnD PTG OSC
                                  1
     Number of AnD DFFN
                                   11
     Number of AnD DFF
                                   29
     Number of LUT4
                                   104
Resource Usage...
     io 8 used (Capacity 24)
           14 used (Capacity 64)
     clb
            2 used (Capacity 8)
     сm
     pmt3 used (Capacity16)atc3 used (Capacity6)
             3 used (Capacity 16)
     corner 3 used (Capacity 4)
     ptg 1 used (Capacity 2)
     uLogic 104 used (Capacity 512)
Components Stats...
     $techmap\component 1
           AnD DFF 26
           AnD DFFN
                      4
     $techmap\otp fuse module
           AnD DFF
                       3
                       7
           AnD DFFN
     component 1
           AnD ADi dual
                             1
           AnD ATC Comp
                             3
           AnD ATC Summer
                             1
           AnD CM PID
                             2
           AnD Nref dyn
                             1
           AnD Nref fix
                             3
           AnD_PMT
                             3
     otp fuse module
           AnD ATC Comp
                             1
           AnD Nref fix
                             1
```

I860_B + I480_B Resource Usage

Circui	lt Stats		
	Number of AnD Temp Senso	r	1
	Number of AnD I2C Phy	_	1
	Number of AnD ADi dual		1
	Number of AnD ATC IO		10
	Number of AnD ATC Comp		4
	Number of AnD ATC Summer		1
			1 3
	Number of AnD_PMT		
	Number of AnD_CM_PID	1.0	2
	Number of AnD_CM_RAM_256	XT8	
	Number of AnD_Nref_dyn		1
	Number of AnD_Nref_fix		4
	Number of AnD_PTG_Phase_	Coun	
	Number of AnD_PTG_GBUF		2
	Number of AnD_PTG_OSC		2
	Number of AnD_DFFN		14
	Number of AnD_DFF		60
	Number of LUT4		182
Resour	rce Usage		
	io 10 used (Capacit	·У	24)
	clb 23 used (Capacit	·У	64)
	cm 3 used (Capacit	·У	8)
	pmt 3 used (Capacit	У	16)
	atc 3 used (Capacit	y	6)
	corner 3 used (Capacit		
	ptg 2 used (Capacit	-	
	uLogic 182 used (Capaci	-	
Compor	nents Stats	4	
1	<pre>\$techmap\component 1</pre>		
	AnD DFF 18		
	—		
	<pre>\$techmap\component 2</pre>		
	AnD DFF 39		
	AnD DFFN 7		
	—		
	<pre>\$techmap\otp fuse module</pre>		
	AnD_DFF 3		
	And DFFN 7		
	—		
	component 1		
	AnD CM RAM 256x18	1	
	component 2		
	AnD ADi dual	1	
	AnD ATC Comp	3	
	AnD ATC Summer	1	
	AnD CM PID 2	-	
	AnD Nref dyn	1	
	AnD Nref fix	3	
	AnD PMT 3	0	
	·····2_····· 5		
	otp fuse module		
	AnD ATC Comp	1	
	AnD_AIC_COMP AnD Nref fix	1	
		-	

I860_B + Tel + I480_B Resource Usage

	9
Circuit Stats	
Number of AnD Temp Sensor 1	
Number of AnD I2C Phy 1	
Number of AnD ADi dual 2	
Number of AnD ATC IO 10	1
Number of AnD ATC Comp 4	
Number of AnD ATC Summer 2	
Number of AnD PMT 4	
Number of AnD CM PID 2	
Number of AnD CM RAM 256x18 1	
Number of AnD Nref dyn 2	
Number of AnD_Nref_fix 5	
Number of AnD PTG Phase Count 2	
Number of AnD_DFFN 22	
Number of AnD_DFF 11	
Number of AnD_ADCR 11	
Number of LUT4 28	0
Resource Usage	
io 10 used (Capacity 24)	
clb 39 used (Capacity 64)	
cm 3 used (Capacity 8)	
pmt 4 used (Capacity 16)	
atc 3 used (Capacity 6)	
corner 4 used (Capacity 4)	
ptg 2 used (Capacity 2)	
uLogic 291 used (Capacity 512)	
Components Stats	
<pre>\$techmap\component 1</pre>	
AnD DFF 18	
—	
<pre>\$techmap\component 2</pre>	
AnD DFF 90	
AnD DFFN 15	
<pre>\$techmap\otp_fuse_module</pre>	
AnD DFF 3	
AnD DFFN 7	
component 1	
AnD CM RAM 256x18 1	
component_2	
AnD_ADCR 11	
AnD_ADi_dual 2	
AnD_ATC_Comp 3	
AnD_ATC_Summer 2	
AnD_CM_PID_2	
AnD_Nref_dyn 2	
AnD_Nref_fix 4	
AnD_PMT 4	
otp_fuse_module	
AnD_ATC_Comp 1	
AnD_Nref_fix 1	

Internal PMIC Blocks and Resources

Each Power Component uses several blocks and resources that are available as part of the AmP platform. Listed below is a description of blocks and resources that are used to create C860_B power components. An example application is shown in Figure 12.

Noise-immune references - Nrefs

- 10 bit, 0.1% resolution for <0.5% regulation
- Curvature compensated band-gap trim
- Precision across process, temperature

Nrefs provide reference voltages to analog GPIOs, Adaptive Digitizers, Threshold Comparators, In Amp, SIM linear LDO and SIM protect. On power-up, Nrefs are configured to voltages specified by the user.

Compensator Memory – CRAM

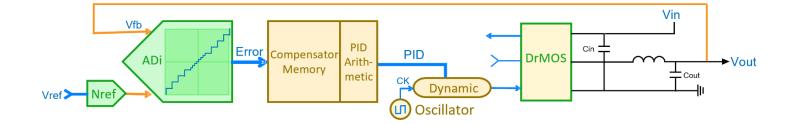
- Flexible, high bandwidth PID
- Adjust gain/phase margin, bandwidth
- Symmetric, binary scaling cuts memory by four
- Adaptive, dual regulation, 1 or 2 pole

The CRAM provides digital compensation to integrated MOSFETs implementing switching regulator functions including buck, boost and multi-phase regulators. The CRAM implements the Proportional Integral Derivative algorithm, PID, as in the following equation:

$$\begin{split} \mathsf{P}[\mathsf{n}] &= \mathsf{P}[\mathsf{n}\text{-}1]^*\mathsf{a}1 + \mathsf{P}[\mathsf{n}\text{-}2]^*\mathsf{a}2 + \mathsf{E}[\mathsf{n}]^*\mathsf{a} + \mathsf{E}[\mathsf{n}\text{-}1]^*\mathsf{b} + \mathsf{E}[\mathsf{n}\text{-}2]^*\mathsf{c} \\ 1 \text{ pole: } \mathsf{a}1 &= \mathsf{1}, \quad \mathsf{a}2 &= \mathsf{0} \quad 2 \text{ pole: } \mathsf{a}1 &= \mathsf{0.5}, \, \mathsf{a}2 &= \mathsf{0.5} \\ \mathsf{E}[\mathsf{n}] &= \mathsf{Vref}\text{-}\mathsf{Vout}[\mathsf{n}] \end{split}$$

Precision Modulation Timers - PMTs

- 11-bit, 1.25 ns resolution
- Static, dynamic or stopwatch
- Lowers bias current, system freq.


The PMT provides precision delays for Pulse Width Modulation (PWM), MOSFET turn-on, turn-off timing and sensor sample timing. Delays may be fixed or dynamic ranging from nanoseconds, milliseconds, microseconds to seconds with resolution less than one nanosecond.

Adaptive Digitizer – ADi

- Digitize feedback Error
- Highest precision at reference point
- Low cost & fast sampling

The ADi converts differential analog signals from GPIOs or Nrefs and deliver up to 10-bits digital signed magnitude numbers to the digital fabric. Each ADi consists of two digitizers to provide highest speed and precision.

Figure 12: AmP Blocks and Resources driving DrMOS Example - Buck Regulator

Additional Resources

AnDAPT AmP Platform_B datasheet

Revision History

Date	Revision
12/17/2022	Adjustable output voltage with down to 2.4 mV resolution changed to to 2.5 mV resolution V_{OUT} is larger than 2.3V changed to 2.25V
06/09/2022	Added max on time
02/03/2022	Updated Figure 3 to show 1.2V driving IREFC.
08/04/2020	Added I860_B, I2C communication for dynamic voltage scaling and current measurement
07/13/2020	Platform B, revision B
03/26/2020	Clarified DrMOS part numbers for 3.3V compatible tri-state PWM input
05/15/2019	Preliminary release

www.AnDAPT.com

Trademarks

© 2022 AnDAPT, the AnDAPT logo, AmP, WebAmP, AmPLink, AmPScope, WebAdapter and other designated brands included herein are trademarks of AnDAPT, LLC in the United States and other countries. All other trademarks are the property of their respective owners.