PWM Single-Phase DrMOS Controller

Power Component: C865_B

Product Description

The C865_B Power Component is a customizable, single-phase, voltage-mode DrMOS controller designed for point-ofload (POL) applications. Combine the C865_B with other Power Components to create a custom-defined, AnDAPT AmP on-demand PMIC.

Power components are software components, accessible through WebAmP[™], allowing users to create their own PMIC. The C865_B has been developed to interface with industry-standard DrMOS devices using DCR current sense such as the onsemi NCP302035*/2040*/2150*/FDMF5820DC and Alpha & Omega Semiconductor. AOZ5339QI/5636QI/5237QI* that have similar pinout. The DrMOS is a fully integrated power stage that integrates a high side and low side MOSFET and a high-performance driver with integrated bootstrap FET. Maximum output current will be based on the selected external DrMOS and on the thermal design of the specific application. Development Board, DB3 supports the above DrMOS devices.

Features

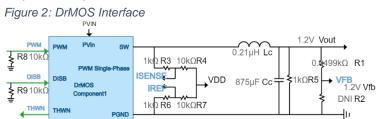
- PWM, voltage mode, DrMOS controller
- Adjustable output voltage with down to 2.5 mV resolution
- 1% voltage accuracy
- Efficiency up to 94%
- Adjustable switching frequency 533 to 1000 kHz
- Adaptable bandwidth & phase margin
- Adjustable protections: Input Undervoltage Lockout (ViUVLO), Output Undervoltage Lockout (VoUVLO), Overcurrent Protection (OCP), Overvoltage Protection (OVP), Over temperature Protection (OTP), Short-circuit Protection (SCP)
- Power-good flag output and Enable input
- Controller junction temperature range -40°C to +125°C
- Component included in the WebAmP[™] development tool

Applications

- On-demand power management, multi-rail power integration
- Powering server, processor, memory, storage, network switcher and router platforms
- FPGA, processor, SSD, subsystem power control & sequencing

Figure 1. C865_B Power Component

>VINFB		PWM>
>EN		
		PGood>
>VFB	C865 (B_1_0) PWM Singlephase	OVP>
>ISENSE	DrMOS Component1	OCP>
>IREF		OTP>
		UVLO>
>THWN		DISB>

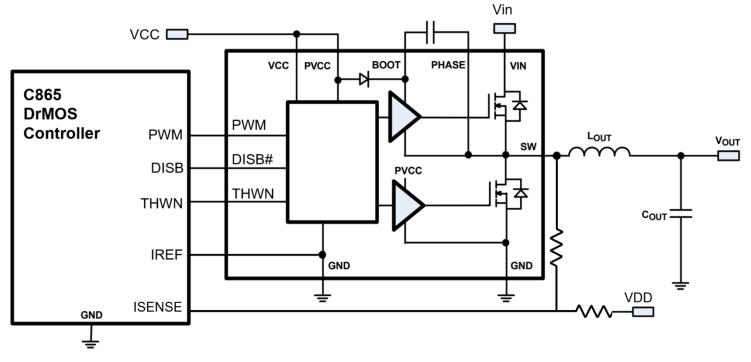

Product Detail

The C865_B Synchronous Buck controller power component symbol is shown in Figure 1. The controller drives a DrMOS integrated power stage with connections as shown in Figure 2 and described in the Pin Function and Description Table. A typical application diagram is shown in Figure 3.

Output voltage feedback is compared against an internal reference using a high-performance voltage-error digitizer that provides tight voltage regulation accuracy under transient conditions. Pulse-width modulated (PWM), voltage-mode regulation is implemented with PID compensation. The switching frequency is either generated internally via an oscillator with selectable frequencies or provided via an external pin.

The customizable output voltage is specified by the power engineer during customization using AnDAPT's cloud-based WebAmp development software. The C865_B component has customizable control and status pins including enable input, an optional power-good output, and optional output flags to signal when the system triggers an overvoltage (OVP), overcurrent (OCP), undervoltage lockout (UVLO), catastrophic failure or over temperature (OTP) condition. The threshold values are specified by the power engineer using the WebAmp tool.

Customizable soft-start and soft-stop slew rates are also specified by the power engineer using the WebAmp tool. Additional sequencing options are available when used in conjunction with the C420 Sequencer, by interconnecting signals EN and PGood to provide customizable dependencies and customizable delays between each sequence step.



* R8 & R9 required on particular part numbers only

Pin Function and Description Table

Port Name	NCP302035 NCP302040	FDMF5820DC	AOZ5237QI AOZ5339QI AOZ5636QI	I/O	Description
EN				Ι	Enable DrMOS controller
OVP				0	Over Voltage Protection fault flag for internal connection to AmP fault manager
OCP				0	Over Current Protection fault flag for internal connection to AmP fault manager
OTP				0	Over Temperature Protection fault flag for internal connection to AmP fault manager
UVLO				0	Input Under Voltage Lock Out fault flag for internal connection to AmP fault manager
PGood				0	Controller Power Good signal
CFP				0	Catastrophic Fault Protection fault flag for internal connection to AmP fault manager.
VINFB				I	Internal - Input voltage measurement for ViUVLO protection
PWM	PWM	PWM	PWM	0	DrMOS power stage gate driver control signal output from DrMOS controller
DISB	DISB#	EN/FAULT#	DISB#	0	Output disable pin. When this pin is pulled to a logic high level, the DrMOS Power Stage driver is enabled.
THWN	THWN	TMON	THWN	I	Temperature monitor input from DrMOS Power Stage
ISENSE				Ι	Current monitor input from DrMOS Power Stage
IREF				I	Reference voltage connected to DrMOS power stage GND
VFB				Ι	VOUT feedback for DrMOS controller

Electrical Characteristics

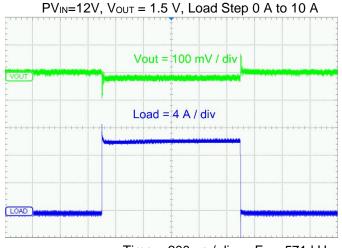
PVIN= VIN=12V, TA=25°C, Cvdd=10µF, Cvcc=1µF, unless otherwise specified

Parameters	Test Conditions	Min	Тур	Max	Units
Output Voltage (Vout)		0.7		5.0	V
Output Voltage Regulation (Vout)	Including load regulation and temperature variation V _{IN} range: 4.5V to 14V	-1		+1	%
Switching frequency (Fsw)		533		1000	kHz
Switching frequency accuracy		-5		+5	%
Efficiency ¹	V _{IN} =12V, V _{OUT} =1.8V, F _{SW} =571kHz, I _{OUT} =10A		94		%
PROTECTION					
ViUVLO, input Undervoltage Lockout		4		10	V
OCP, Over Current Protection (% Іоит)			150		%
OTP, Over Temperature Protection for AmP device	Shutdown (Power Good goes low) Hysteresis		125		°C
OVP, Overvoltage Protection trip point range (relative to Vout Setting)	No resistor divider on voltage feedback. If a resistor divider is used, these values will increase by a factor equal to the divider ration	+100		+432	mV
VoUVLO, output Undervoltage Lockout threshold range (relative to Vout Setting)	No resistor divider on voltage feedback. If a resistor divider is used, these values will increase by a factor equal to the divider ration	-100		-432	mV
Power Good threshold (relative to Vout Setting)	No resistor divider on voltage feedback. If a resistor divider is used, these values will increase by a factor equal to the divider ratio	-100		-432	mV

* Parameters shaded in green are user customizable as set in WebAmP development software

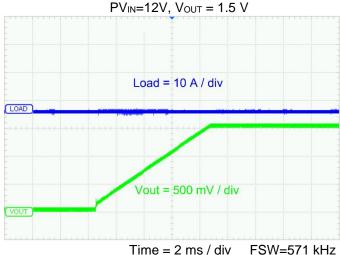
¹ Efficiency measured with the AOZ5339 DrMOS

Digital GPIO Electrical Characteristics

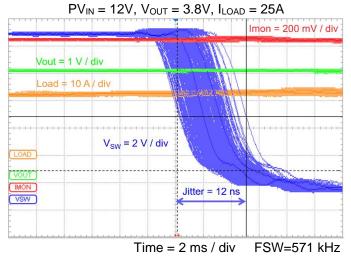

VIN=12V and TA=25°C

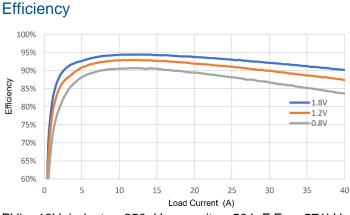
I/O	١	/ccio (V)		V _{IL} (V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{ОН}
Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mA)
3.3 V	3.14	3.3	3.46	-0.3	0.8	2.0	Vccio + 0.2	0.4	Vccio – 0.5	2	-2

Typical Characteristics

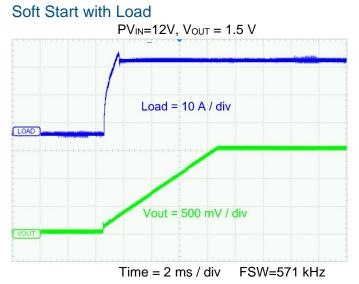

Unless otherwise specified: TA = 25°C

Transient Response

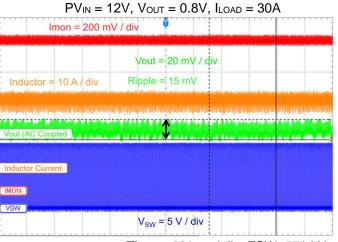



 $Time = 200 \ \mu s \ / \ div \qquad F_{sw} = 571 \ kHz$

Soft Start No Load



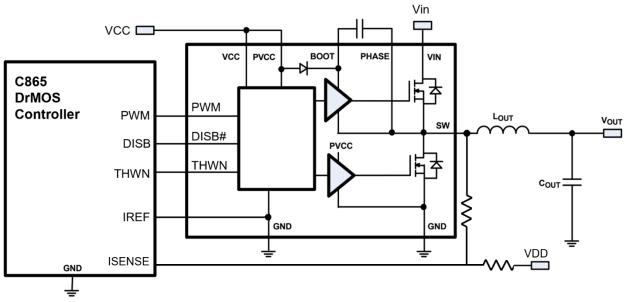
Jitter



 $PVin=12V,\ inductor=250nH,\ capacitor=564uF\ F_{SW}=571kHz$

Ripple

Time = 200 μ s / div FSW=571 kHz


Theory of Operation

The C865_B Synchronous Buck Regulator with integrated MOSFETs operates in voltage mode by comparing the V_{OUT} feedback voltage, Vfb, with a programmable reference, Vref to direct the PID (Proportional Integral Derivative) controller to produce a PWM (Pulse Width Modulation) input to the Hiside and Lo-side MOSFET switches as shown in Figure 4.

In CCM (Continuous Conduction Mode), the PWM driver goes high turning the Hi-side switch "ON" to provide $\mathsf{PV}_{\mathsf{IN}}$ to

Figure 4: Functional Block Diagram

the LX side of an inductor, L, where $V_L = V_{LX} - V_{OUT}$. When the PWM driver goes low, the Hi-side switch turns "OFF", and after a shoot through delay, the Lo-side switch turns "ON" providing a path for the inductor current to decrease with $V_L = -V_{OUT}$, until the next PWM turns back "ON". As this cycle repeats, the PID algorithm regulates V_{OUT} by continuously updating the PWM cycle to optimize ripple, regulation, and transient response over changing load conditions.

Start-up and Shutdown

Start-up and shutdown are controlled by the EN digital port which may be connected to a GPIO pin or a control component such as the C420 Sequencer. When EN goes high, the output voltage, VOUT, will ramp up according to the Soft Start programmable preset ramp time in Parameter Settings. When EN goes low, the output voltage, VOUT, will ramp down according to the Soft Start programmable preset ramp time in Parameter Settings.

PGood

The power-good, PGood, digital port may be connected to a GPIO pin or a control component such as the C420 Sequencer to indicate the output voltage regulation status. PGOOD goes high on power-up after completion of all the Soft Start time (Figure 5) and when all Faults are cleared. PGOOD will go low for faults such as ViUVLO, VoUVLO, OVP over voltage, OCP current limit, or OTP thermal shutdown. PGOOD will also go low if EN goes low.

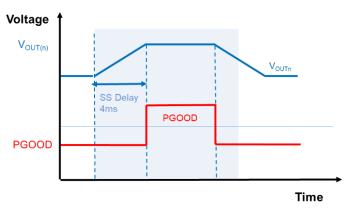


Figure 5 Soft Start PGOOD wavforms

Protection Features

The C865_B provides many protection features including ViUVLO, OVP, OCP and OTP.

ViUVLO

The PV_{IN} voltage Under Voltage Lockout, ViUVLO, digital port may be connected to a GPIO pin or a control component such as Digital Logic Block to indicate the PV_{IN} voltage status. ViUVLO flag stays low when PV_{IN} voltage is higher than the programmable preset condition in Parameter Settings. ViUVLO goes high when PV_{IN} voltage is less than the programmable preset condition in Parameter Settings. PVIN may be sensed on the GPIO pin connected to the PVINFB analog port which is resistor divided by a fixed 1/6 ratio of PVIN. On detection of ViUVLO, the C865_B will power down and PGood will go low. On ViUVLO returning low, the C865_B will restart with a new Soft Start cycle.

ViUVLO from Power Stage (DrMOS)

In addition to the standard protections which are implemented at the device level using other power components, the C865_B also includes other protection depending on the DrMOS used.

OVP

The Over Voltage Protection, OVP, digital port may be connected to a GPIO pin or control component logic blocks

to indicate the output voltage over voltage status. OVP goes high when output voltage, V_{OUT} , is higher than the programmable preset condition in Parameter Settings. OVP goes low when output voltage, V_{OUT} , is less than the programmable preset condition in Parameter Settings. On detection of OVP, the C865_B will skip Hi-side switch pulses until OVP returns low.

OCP

The Over Current Protection, OCP, digital port may be connected to a GPIO pin or control component logic blocks to indicate the output over current status. When I_{OUT} , is greater than 150% of the Output Current setting, the C865_B will shutdown. The user needs to toggle EN down and then UP to restart the controller.

OTP

Thermal shutdown is provided to protect the regulator from excessive junction temperature. When the junction temperature reaches 125°C the device shuts down. On detection of OTP, the C865_B will power down and PGood will go low. On OTP returning low, an EN cycling low-to-high, will restart the C865_B with a new Soft Start cycle.

Parameter Settings

Basic Configuration

Default parameters may be changed per user requirement.

SW FreqCK0 0.8 MHz 0°PVIN Voltage12VPVin NamePVin1Output Voltage1.2VVout NameVout1VVout Ripple0.62%Vout Overshoot0.01VOutput Current30AIout Ripple30%	 Basic Configu 	iration ——	
PVin Name PVin1 Output Voltage 1.2 V Vout Name Vout1 Vout1 Vout Ripple 0.62 % Vout Overshoot 0.01 V Output Current 30 A	SW Freq	CK0 0.8 MHz 0	•
Output Voltage 1.2 V Vout Name Vout1 Vout Ripple 0.62 % Vout Overshoot 0.01 V Output Current 30 A	PVIN Voltage	12	v
Vout Name Vout1 Vout Ripple 0.62 % Vout Overshoot 0.01 V Output Current 30 A	PVin Name	PVin1	
Vout Ripple 0.62 % Vout Overshoot 0.01 V Output Current 30 A	Output Voltage	1.2	V
Vout Overshoot 0.01 V Output Current 30 A	Vout Name	Vout1	
Output Current 30 A	Vout Ripple	0.62	%
	Vout Overshoot	0.01	V
Iout Ripple 30 %	Output Current	30	А
	lout Ripple	30	%
lout Delta 10 A	lout Delta	10	А

Vour ripple is computed as follows:

Vour ripple = Iripple/(8*Cour*Fsw)

DrMOS Selection

The following DrMOS devices require two 10 k Ω pulldown resistors, as shown in Figure 2, because they have very high input impedances on their PWM and DISB# inputs:

- onsemi NCP302035
- onsemi NCP302040
- onsemi NCP302150
- Alpha & Omega Semiconductor AOZ5237QI

Choose the DrMOS device from the pull-down menu below:

DrMOS					
DrMOS Chip ①	On Semi NCP302035	~			
	On Semi NCP302035				
LC Components	On Semi NCP302040 On Semi NCP302150 On Semi FDMF5820DC				
│ □Manual Set LC Φ	AOS AOZ5339QI AOS AOZ5636QI AOS AOZ5237QI				

LC Component Selection

Default values for Inductance, L, and output capacitance, Cout, are computed as follows:

 $L = (V_{IN}-V_{OUT})^* V_{OUT} / (V_{IN} *Fsw*Iripple)$

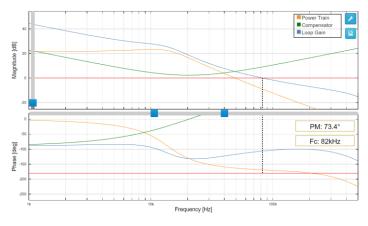
C_{OUT} = I_{OUT}delta^{2*}L / (2* V_{OUT} *Vos)

Manual Set LC					
Inductor	0.15	μH			
Inductor DCR	10	mΩ			
Capacitor	625	μF			
Cap ESR	4	mΩ			
f _{LC}	16.4	kHz			

Inductor and Capacitor values may be changed by checking Manual Set LC or selecting the BoM tab where manufacturers part numbers may be selected.

Vfb Resistor Components

Feedback divider resistors R1 and R2 default to 49.9 Ω and open (infinity). When V_{OUT} is larger than 2.25V, a resistor divider ratio is computed to select 1% resistor values for both R1 and R2.


Manual Set R	esistors —	
R1	0.0499	kΩ
R2	Infinity	kΩ
Vfb	1.2	v

Controller

The controller compensation memory block provides PID compensation of error signals using the integrated compensation logic without external passives or an arithmetic unit. The user can adjust a bandwidth, a gain, and a phase margin of the compensation logic. For example, a user can interactively adjust the proportional gain Kp and the gains Fz1 and Fz2 shown below to effectively adjust the derivative and integral gains Kd and Ki as well as the bandwidth and the phase margin.

– Controller –		
Gain	400	
F _{z1}	8	kHz
F _{z2}	32	kHz
Ki	2.010619e+7	
Kd	1.989437e-3	

Gain, Fz1 and Fz2 are chosen to provide best Phase Margin and Crossover Frequency, Fc, as adjusted in the Bode Plot shown below:

Fault Protection

Input voltage Under Voltage Lockout, ViUVLO, indicates the input voltage status greater or less than programmable preset condition (default 4.5V). Output voltage Under Voltage Lockout, VoUVLO, indicates the output voltage status greater or less than programmable preset condition (default 75% of Vout). Over Voltage Protection, OVP, indicates output voltage status greater or less than the programmable preset condition (default 25% above Vout). Over Current Protection, OCP, indicates the output over current greater or less than the programmable preset condition. Over Temperature Protection, OTP, indicates thermal shutdown has occurred. (set to 125°C)..

Fault Protection				
Enable Input	UVLO			
Input UVLO	5	V		
Output UVLO				
Output UVLO	0.9	V		
Cycle by cycl	le current limit			
OCP Level	45	А		
✓Enable OVP				
OVP Level	1.5	V		
Enable OTP				
Over Temperature	125			
OTP Shutdown				
OTP Hiccup				

Fault Protection Power Stage

In addition to the standard protection which are implemented at the device level using other power components, the C865_B also includes other protection depending on the DrMOS used. When Hiccup options are selected, then the controller will shut down and automatically power up when the power stage fault has cleared.

Power Stage Fault Protection Input UVLO UVLO Shutdown UVLO Hiccup Over Current OCP Shutdown OCP Hiccup Over Temperature OTP Shutdown OTP Hiccup

Constraints

Soft Start times of 1 to 16 milliseconds are programmable by the user as a parameter selection. The default is 8 milliseconds as shown. Power Good ranges 59% to 100% and default is 85%.

Constraints –		
Soft Start —		
Rise Time	8	ms
✓Power Good		
Power Good	85	%

Additional Information DrMOS

For additional information see DrMOS supplier datasheets such as onsemi NCP302035/2040/2150/FDMF5820DC and Alpha & Omega Semiconductor AOZ5339QI/5636QI/5237QI DrMOS recommended for use with C865_B.

C865_B Resource Usage

```
Circuit Stats...
     Number of AnD Temp_Sensor
                                    1
     Number of AnD ADi dual
                                    1
     Number of AnD ATC IO
                                    8
     Number of AnD ATC Comp
                                    4
     Number of AnD ATC Summer
                                    1
                                    3
     Number of AnD PMT
     Number of AnD CM PID
                                    2
     Number of AnD Nref dyn
                                    1
     Number of AnD Nref fix
                                    4
     Number of AnD PTG Phase Count 1
     Number of AnD_PTG_GBUF
                                    1
     Number of AnD PTG OSC
                                   1
     Number of AnD DFFN
                                   11
     Number of AnD DFF
                                    29
     Number of LUT4
                                    104
Resource Usage...
           8 used (Capacity 24)
     io
     clb
            14 used (Capacity 64)
             2 used (Capacity 8)
     сm
             3 used (Capacity 16)
     pmt
     atc
                               6)
             3 used (Capacity
     corner 3 used (Capacity
                                  4)
             1 used (Capacity
                                  2)
     ptg
     uLogic 104 used (Capacity 512)
Components Stats...
     $techmap\component 1
           AnD DFF
                       26
           AnD DFFN
                      4
     $techmap\otp fuse module
           AnD DFF
                       3
                       7
           AnD DFFN
     component 1
           AnD ADi dual
                             1
           AnD ATC Comp
                             3
           AnD ATC Summer
                             1
           AnD CM PID
                             2
           AnD Nref dyn
                             1
                             3
           AnD Nref fix
           AnD PMT
                             3
     otp fuse module
           AnD ATC Comp
                             1
           AnD Nref fix
                             1
```

10

Internal PMIC Blocks and Resources

Each Power Component uses several blocks and resources that are available as part of the AmP platform. Listed below is a description of blocks and resources that are used to create C865_B power components. An example application is shown in Figure 12.

Noise-immune references - Nrefs

- 10 bit, 0.1% resolution for <0.5% regulation
- Curvature compensated band-gap trim
- Precision across process, temperature

Nrefs provide reference voltages to analog GPIOs, Adaptive Digitizers, Threshold Comparators, In Amp, SIM linear LDO and SIM protect. On power-up, Nrefs are configured to voltages specified by the user.

Compensator Memory – CRAM

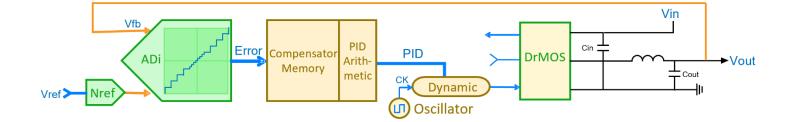
- Flexible, high bandwidth PID
- Adjust gain/phase margin, bandwidth
- Symmetric, binary scaling cuts memory by four
- Adaptive, dual regulation, 1 or 2 pole

The CRAM provides digital compensation to integrated MOSFETs implementing switching regulator functions including buck, boost and multi-phase regulators. The CRAM implements the Proportional Integral Derivative algorithm, PID, as in the following equation:

$$\begin{split} \mathsf{P}[\mathsf{n}] &= \mathsf{P}[\mathsf{n}\text{-}1]^*\mathsf{a}1 + \mathsf{P}[\mathsf{n}\text{-}2]^*\mathsf{a}2 + \mathsf{E}[\mathsf{n}]^*\mathsf{a} + \mathsf{E}[\mathsf{n}\text{-}1]^*\mathsf{b} + \mathsf{E}[\mathsf{n}\text{-}2]^*\mathsf{c} \\ 1 \text{ pole: } \mathsf{a}1 &= \mathsf{1}, \quad \mathsf{a}2 &= \mathsf{0} \quad 2 \text{ pole: } \mathsf{a}1 &= \mathsf{0.5}, \, \mathsf{a}2 &= \mathsf{0.5} \\ \mathsf{E}[\mathsf{n}] &= \mathsf{Vref}\text{-}\mathsf{Vout}[\mathsf{n}] \end{split}$$

Precision Modulation Timers - PMTs

- 11-bit, 1.25 ns resolution
- Static, dynamic or stopwatch
- Lowers bias current, system freq.


The PMT provides precision delays for Pulse Width Modulation (PWM), MOSFET turn-on, turn-off timing and sensor sample timing. Delays may be fixed or dynamic ranging from nanoseconds, milliseconds, microseconds to seconds with resolution less than one nanosecond.

Adaptive Digitizer – ADi

- Digitize feedback Error
- Highest precision at reference point
- Low cost & fast sampling

The ADi converts differential analog signals from GPIOs or Nrefs and deliver up to 10-bits digital signed magnitude numbers to the digital fabric. Each ADi consists of two digitizers to provide highest speed and precision.

Figure 12: AmP Blocks and Resources driving DrMOS Example - Buck Regulator

Additional Resources

<u>AnDAPT AmP Platform_B datasheet</u>

Revision History

Date	Revision
12/17/2022	Adjustable output voltage with down to 2.4 mV resolution changed to 2.5 mV resolution When VOUT is larger than 2.3V changed to 2.25V
04/07/2022	Added $10k\Omega$ R8 and $10k\Omega$ R9, Figure 2: DrMOS Interface. Added onsemi NCP302150
04/11/2021	Added 1k Ω R6 and 10k Ω R7, Figure 2: DrMOS Interface.
08/17/2020	Preliminary release

AnDAPT On-Demand Power Management

www.AnDAPT.com

Trademarks

© 2022 AnDAPT, LLC, the AnDAPT logo, AmP, WebAmP, AmPLink, AmPScope, WebAdapter and other designated brands included herein are trademarks of AnDAPT, LLC in the United States and other countries. All other trademarks are the property of their respective owners.

12