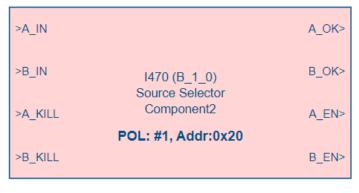
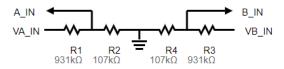
AnDAPT

Source Selector Power Component: 1470

Product Description

The I470 Component is a customizable 2 channel source selector targeted at DC power with battery backup or dual battery applications.


Features


- Two independent window comparators
- Parameterized UVLO and OVP thresholds
- Parameterized rising/falling hysteresis on thresholds
- Independent "OK" outputs
- "EN"able outputs with priority encoding of A Over B
- I2C readable status register
- I2C adjustable UVLO thresholds

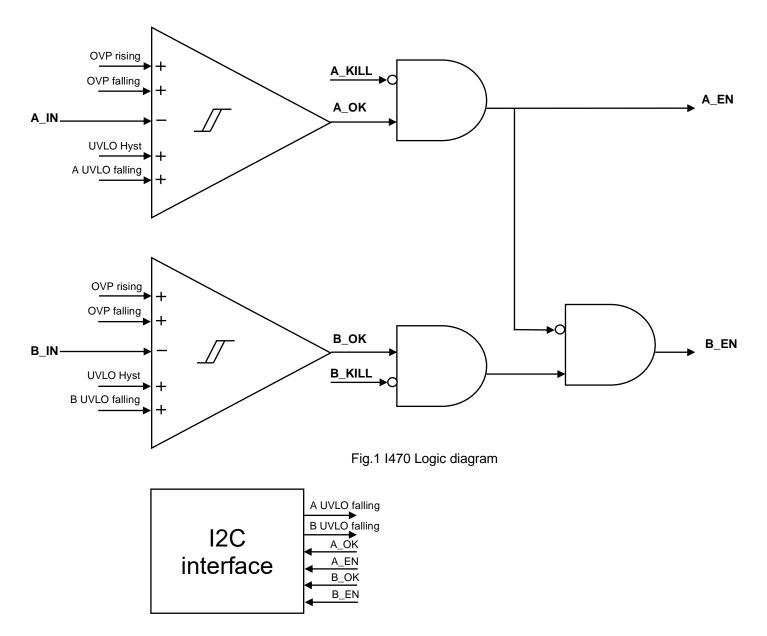
Applications

- Dual Power Sources
- Dual battery source selection
- DC / Battery pack backup source selection

Figure 1: I470 component

Product Detail

The I470 Source Selector enables priority selection of two external high voltage sources based on programmable UVLO and OVP threshold parameter settings. Thresholds are set in WebAMP parameter settings and can be updated over I2C. The following describes the Source Selector operation.


Operations

- Independent UVLO thresholds are available for A_IN and B_IN
- UVLO falling thresholds are parameters and can also be modified via I2C
- UVLO Hyst is a parameter
- UVLO rising thresholds are generated from UVLO falling + UVLO Hyst
- Both inputs use same OVP rising and OVP falling threshold parameters
- An input is OK if it sits between its UVLO and OVP thresholds
- Selection Logic will prioritize A_ENABLE over B_ENABLE
- Both sources can be disabled using the A_KILL and B_KILL inputs

Pin Function and Description Table

Port Name	I/O	Description
A_IN	I	source A input voltage
B_IN	I	source B input voltage
A_KILL	I	Source A kill input. Causes A_EN to be de-asserted. If B is OK, B_EN will be asserted
B_KILL	I	Source B kill input. Causes B_EN to be de-asserted
A_OK	0	Indicator that A_IN is between its UVLO and OVP thresholds
B_OK	0	Indicator that B_IN is between its UVLO and OVP thresholds
A_EN	0	Signal to enable Source A
B_EN	0	Signal to enable Source B

Figure 2: I470 Block Diagram

Electrical Characteristics

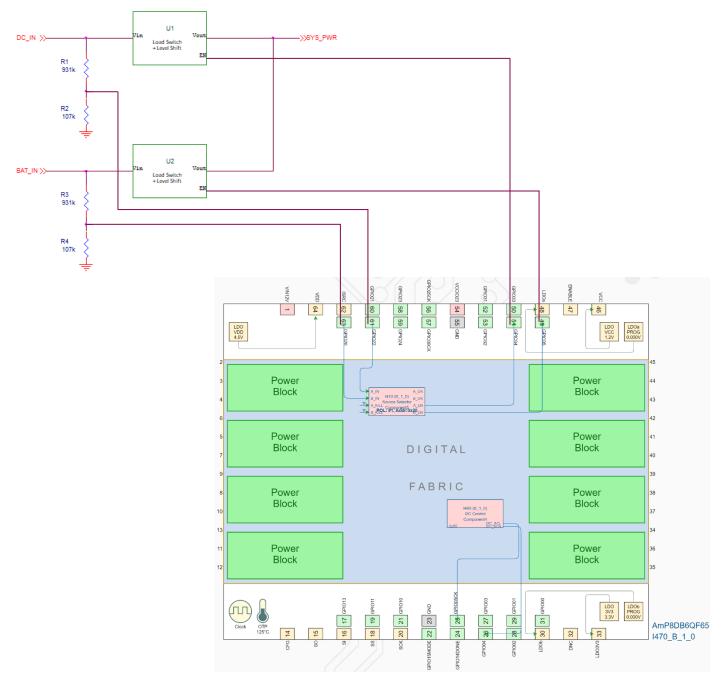
VIN=12V, TA=25°C unless otherwise specified

Parameter	Condition	Min	Тур	Max	Units
Voltages below are	voltages at the pins of the i.c.				
V _{A_IN}	source A divided input voltage	0.5		2.5	V
V _{B_IN}	source B divided input voltage	0.5		2.5	V
Threshold accuracy	V _{IN} = 0.8v	-8		+8	mV
	0.75v > V _{IN} > 2.0v	-10		+10	mV
	0.5 > V _{IN} > 2.5v	-15		+15	mV
Threshold variation	0°C <t<sub>A<85°C</t<sub>	-0.4		+0.4	%
over temperature	-40°C <t<sub>A<150°C</t<sub>	-0.8		+0.8	%

Recommended Operating Conditions

Symbol	Paramaeter	Min	Тур	Max	Units
	are specified before an external voltage divider ider should ensure that the Vin limits above are not e	xceeded			
Src A UVLO fall	UVLO falling threshold for source A		10.1		V
Src B UVLO fall	UVLO falling threshold for source B		10.1		V
UVLO rise Hyst	hysteresis from UVLO falling to UVLO rising for both sources		0.3		V
OVP falling	OVP falling threshold for both sources		18.3		V
OVP rising	OVP rising threshold for both sources		18.8		V

Parameter Settings


Default parameters may be changed per user requirement.

 Basic Configuration 								
OVP Falling Φ	18.3	V						
OVP Rising D	18.8	V						
Ext Div Ratio D	9.701							
Src A UVLO Fall ①	10.1	V						
Src B UVLO Fall ①	10.1	V						
UVLO Rise Hyst ①	0.3	V						
─ □Manual Set Resistor Φ								
R1	931	kΩ						
R2	107	kΩ						

Basic Design

Below shows part of a design using this component

Figure 3 I470 example schematic diagram

I2C Interface

AnDAPT

				AmF	Lin	k Pr	rogram	ming Co	ntrols	5								
	Current Project	Choose File No file c	nosen						AnDAPT A	AMP8D6	✓ CS1 ✓ Program 8	& Verify						
AmPLink	Interface C	ontrols					Com	ponent S	Specif	ficatio	on and Interface	÷						
Function	Name	Control						ion Rail	Specification			Actual (I2C/DVS Series						
001	ENABLE	Out 0	Comp		Base	Part	Description					Target	Measured	State		Status		
SPI configuration	CFG	in 0	Name		Addr				Voltage ((V)	Current (A)	Enable Voltage	Voltage (V)						
FLA SH control	WP	Out																
PLASH control	RST	Out	Component2	1	0x20	<mark>1470</mark>) Source Selector	A_UVLO(0x32) B_UVLO(0x34)			10.1 0x1a0 10.1			A_OK	A_EN	B_OK	B_EN	Ka
I2C & DVS control	CTRL	Out										10.1						
120 0 070 00100	ALERT	In 0										0x1a0						
		Update							Update		Repeat			OTP				
							Ge	neral Purpose	I2C Reg	gister Ac	cess							
			Registe	r				Value			Hex	Up	date					
			Write		0	0 0	0 0	0 0 0			00	V	Vrite					

The I2C registers are summarized Table 1.

Note that the first I2C series Power Component will automatically insert one I480 I2C Controller Power Component with additional SDA and SCL signal pins. Additional I2C series Power Components will not insert an I480 as one I480 supports multiple I2C series Power Components.

The I2C Interface provides a user interface to read and write the I2C commands for all the I2C series Power Components contained in the AmP device. When I2C enabled component is present in the design, users will be able to read several device and design parameters. Refer to "I2C Design and Usage Guide" for details on I2C register architecture and accessing I2C registers. The registers used for I470 component are shown in Table 1.

Address	Register / bit	R/W	7	6	5	4	3	2	1	0
0x28	STATUS	R	B_EN	B_OK	A_EN	A_OK	unused	unused	unused	unused
							reads 1	reads 1	reads 1	reads 1
0x32	Source A UVLO lo	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Source A UVLO hi	R/W	unused	unused	unused	unused	unused	unused	Bit9	Bit8
0x34	Source B UVLO lo	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Source B UVLO hi	R/W	unused	unused	unused	unused	unused	unused	Bit9	Bit8

Table 1: I2C Register Map

* Address page+offset methodology as in Figure 4.

** Slave Address can be set in I480 Module

Register Address Format

The register address format for the AmP device is shown in Figure 4. The register address is an 8-bit number which can take on any value from 0x00 to 0xFF. The register space is divided into eight pages, with page 0 dedicated to device-wide registers and pages 1 through 7 to support up to 7 POLs.

Figure 4 Amp I2C register address format

		Page Tal	ole						
								3'b000	Device
								3'b001	POL1
								3'b010	POL2
								3'b011	POL3
I2C Register Addressing Method								3'b100	POL4
7	6	5	4	З	2	1	0	3'b101	POL5
		-		<u> </u>	-	-	•	3'b110	POL6
Page Number					Offset	t		3'b111	POL7

I2C Write/Read Protocol

An Amp device is addressed by its pre-defined 7-bit device physical address (default address is 0x55). Along with the 7bit address, an 8th bit is added to the LSB position to identify whether the following transaction is a read or write, making it an 8-bit address byte. If the least significant bit of the address byte is zero, it is a write transaction whereas a 1 is a read transaction. The Amp device parameters as well as the read/write parameters of the different POLs in the device are accessed through 256 8-bit registers. Every I2C transaction to the Amp device therefore needs another 8-bit register address. The general format of I2C-Amp device write/read protocol is shown in Figure 5. Note that the Amp device is always the slave. In the figure, the shaded portion is sent by the master and the unshaded portion by the slave.

Figure 5 I2C read/write protocol

I2C write to the device

S **Device Address** Wr A **Register Address** А Write byte 1 А Write byte 2 A P I2C read from the device S **Device Address** Wr A **Register Address** A Sr **Device Address** Rd A А NP Read byte 1 Read byte 2 Details of the bit notation S Ρ Sr **Repeated Start** Start Stop Wr Rd Write Bit Read Bit Ν А Ack Nack Data from Master Data from Slave

Both write and read transactions can be either a one byte or a multi-byte transfer. Accordingly, the register address is either the address of the register that is being accessed or the starting address of a sequence of registers that is being accessed. For a write transaction, the device updates write data to successive registers until it receives an I2C stop signal. For read transactions, the master first writes the starting address into the device and starts accepting read from the device after a repeated start signal. The device sends successive register data until the master issues a NACK for the last byte read.

1470

I470_B Resource Usage

Circuit Stats...

Number	of	AnD_I2C_Phy	1
Number	of	AnD_ADi_dual	1
Number	of	AnD_ATC_IO	10
Number	of	AnD_CM_RAM_256x18	1
Number	of	AnD_Nref_dyn	2
Number	of	AnD_PTG_Phase	1
Number	of	AnD_PTG_GBUF	1
Number	of	AnD_PTG_OSC	1
Number	of	AnD_DFFN	2
Number	of	AnD_DFF	73
Number	of	AnD_ADCR	20
Number	of	LUT4	154

Resource Usage...

io	6	used	(Capacity	24)
clb	22	used	(Capacity	64)
CM	1	used	(Capacity	8)
corner	2	used	(Capacity	4)
ptg	1	used	(Capacity	2)
uLogic	174	used	(Capacity	512)

AnDAPT	
--------	--

Revision History Date Revision

03/30/2022 Initial version

www.AnDAPT.com

Trademarks

© 2022 AnDAPT, Inc., the AnDAPT logo, AmP, WebAmP, AmPLink, AmPScope and other designated brands included herein are trademarks of AnDAPT in the United States and other countries. All other trademarks are the property of their respective owners.

8