
AmP Device Configuration App Note

1.0 Introduction to AmP chip programming
A power solution creation using the AmP chip involves several steps, beginning from a system power tree, followed by
obtaining a solution through 3 different options (see flowchart) and culminating in programming the AmP chip to be ready
for deployment in the field. This application note focuses on the various ways an AmP chip can be programmed for
installation on customer PCB for mass production.

Copyright © 2024 AnDAPT Inc. 1CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

2.0 Programming the AmP chip
Please note that throughout the document master and slave modes are mentioned. These modes are in reference to the
AmP device.

The AmP platform supports two modes of configuration through the SPI-compliant serial interface (Serial Peripheral
Interface):

In the slave mode, the AmP device is loaded with its configuration file (.HAX) by an external processor or controller or
the AmPLink.

In the master mode, the AmP device loads its configuration file (.HEX) from an external non-volatile memory. Please
refer to the table “Pin functions and assignments” for details on master and slave pin assignment.

3.0 Program the AmP chip(s) using external controller/processor (Slave mode)
AmP devices can be configured at boot time through the SPI bus from an MCU/processor. In this case the AmP device
becomes an SPI slave and the MCU/processor (master) sends the contents of the “design_slv.hax” file to the AmP chip
(slave) and verifies the checksum of the received data calculated by the AmP chip against the checksum stored in the
“design_slv.hax” file.

The file “design_slv.hax” is generated by the WeAmP tool and can be obtained through option A, B, and C as shown in the
flow chart on page 1.

Slave Mode Diagram

Figure 1. Programming AmP chip using an external controller/processor/AmPLink

Copyright © 2024 AnDAPT Inc. 2CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

Pin Functions and Descriptions
Function Description
SCLK SPI Clock input when AmP is slave; output clock when AmP is master (Active Low)
CS SPI Chip Select line. Input when AmP is slave, output when AmP is master
SO/MISO SPI Serial Out transmits SPI commands
SI/MOSI SPI Serial In input receives SPI data
GPIODONE Before config, pin is shared with DONE output.

Pin is pulled low once device config is successfully finished and subsequently can be used as a
normal GPIO

GPIOMODE Wakes AmP chip up.
Pin serves dual function:
Before config Mode function
After Config Normal GPIO

Mode function:
Master mode Pulled high to VCCIO (3.3 V) through 47 kΩ
Slave mode Pulled low to GND through 47 kΩ

CFG Config pin. Pulled low to GND through 10 kΩ.
CFG input states:
Positive edge AmP held in reset

Negative edge AmP reconfig starts

Any other states?? Constant Low? High?

Basic Setup
A basic setup to configure the AmP device using an external processor/controller is shown in Figure 1. The processor is
the master which drives the SPI lines: SCLK, CS, and SI pins to configure the slave (AmP chip).

AmP Slave Mode

SCLK, CS, SO, SI, GPIO DONE, GPIO MODE, CFG pin configuration when AmP device is in Slave mode

Copyright © 2024 AnDAPT Inc. 3CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

AmP devices follow SPI protocol for configuration. SPI comes in several varieties, the AmP devices follow the following
SPI convention:

SPI Mode CPOL
(Clock Polarity)

CPHA
(Clock Phase)

Clock Polarity in Ideal
State

Clock Phase used to Sample
and/or Shift Data

3 1 1 Logic High
Data sampled on the rising edge
and shifted out on the falling edge

0 0 0 Logic Low Data sampled on the rising edge
and shifted out on the falling edge

Figure 2. A timing diagram for Mode 3 showing clock polarity and phase

In slave mode, the AmP device can operate in systems where there are one or more devices on the single SPI bus. It will
act as a proper slave device and only drive its output when the Chip Select (CS) for the device is activated. This enables
multiple AmP devices on the same SPI bus or combinations with AmP devices and other suitable SPI devices on the
same bus. When the AmP device is not selected its output SO pin will be high impedance.

Figure 3. a) Single master and single slave. b) Single master and three independent slaves

Copyright © 2024 AnDAPT Inc. 4CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

Hax File Description
The .hax file contains everything required to program and verify the Amp device configuration. Some of the important
entries are described below

1b 00 00 00 # report status
1b 00 00 00
44 00 ff ff # indicate data width
ad ba da 55 # valid data authenticate
11 28 17 08 # load config image
00 01 00 80 00 00 18 00 24 04 00 24 24……. # config data
……………………………………………………
ec 87 e5 00 # error check request + checksum for comparison
1b 00 00 00 # report status
d7 00 00 00 00 00 00 00 00 00 00 00 # slave done / complete config + NOPs

To program a device from an MCU it is simply a case of serializing this file and sending it to the SPI.

Example C code to do this is shown next

C code for a MCU / single board computer
'''
#include <stdio.h>
#include <stdlib.h>

#define BLOCK_SIZE 1024

#define STATUS1_POS 29626
#define STATUS2_POS 29627
#define STATUS1 0x01
#define STATUS2 0x58

void sendToSPI(unsigned char *data, size_t size) {
// Implement your SPI sending logic here

printf("Sending to SPI: \n");
for (size_t i = 0; i < size; ++i) {
printf("%d, ", data[i]);

}
printf("\n");

}

int main() {
// Open .hax file
FILE *file = fopen("test_slv.hax", "rb");
if (file == NULL) {
perror("Error opening file");
return 1;

}

// Determine the file size
fseek(file, 0, SEEK_END);
size_t file_size = ftell(file);
fseek(file, 0, SEEK_SET);

// Allocate memory to store the entire file
unsigned char *file_data = (unsigned char *)malloc(file_size);

Copyright © 2024 AnDAPT Inc. 5CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

if (file_data == NULL) {
perror("Error allocating memory");
fclose(file);
return 1;

}

// Read the entire file into memory
size_t bytes_read = fread(file_data, 1, file_size, file);
if (bytes_read != file_size) {
perror("Error reading file");
free(file_data);
fclose(file);
return 1;

}
fclose(file);

// Print the hex data
printf("Hex Data:\n");
for (size_t i = 0; i < file_size; ++i) {
printf("%c", file_data[i]);
if ((i + 1) % 2 == 0) {
printf(" ");

}
}
printf("\n");

// Assuming file_data now contains the hex data, convert it to a list of bytes
size_t hex_count = file_size / 2;
unsigned char *spi_data = (unsigned char *)malloc(hex_count);
if (spi_data == NULL) {
perror("Error allocating memory");
free(file_data);
return 1;

}

printf("\nList of Bytes:\n");
for (size_t i = 0; i < hex_count; ++i) {
char byte[3] = {file_data[i * 2], file_data[i * 2 + 1], '\0'};
spi_data[i] = strtol(byte, NULL, 16);
printf("%d, ", spi_data[i]);

}
printf("\n \n");

// Send the data to SPI in blocks of 1024 bytes
size_t offset = 0;
while (offset < hex_count) {
size_t block_size = (offset + BLOCK_SIZE < hex_count) ? BLOCK_SIZE : (hex_count - offset);
sendToSPI(&spi_data[offset], block_size);
offset += block_size;

}

// Verify the checksum on the device response
unsigned char status1_read, status2_read;
// Assuming you have a function to read data from the SPI peripheral
// Example: receiveFromSPI(&status1_read, 1);
// You should replace this with your actual function to read from SPI

Copyright © 2024 AnDAPT Inc. 6CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

// The loop is just for illustration purposes; adjust as needed
for (size_t i = 0; i < hex_count; ++i) {
if (i == STATUS1_POS) {
status1_read = spi_data[i];

} else if (i == STATUS2_POS) {
status2_read = spi_data[i];

}
}

// Verify the checksum
if (status1_read == STATUS1 && status2_read == STATUS2) {
printf("\nChecksum verification: OK\n");

} else {
printf("\nChecksum verification: FAILED\n");

}

// Clean up
free(file_data);
free(spi_data);

return 0;
}

Copyright © 2024 AnDAPT Inc. 7CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

Python code for a MCU / single board computer
'''

convert a hax file from this format :

1b 00 00 00

1b 00 00 00

44 00 ff ff

ad ba da 55

11 28 17 08

00 01 00 80 00 00 18 00 24 04 00 24 24 00 04 00 00 00 24 24 00 04 0e 04 88 08 00 21 22 01 04 00 00 20.....

To a list of bytes :

27, 0, 0, 0, 27, 0, 0, 0, 68, 0, 255, 255, 173, 186, 218, 85, 17, 40, 23, 8, 0, 1, 0, 128, 0, 0, 24, 0, 36, 4, 0, 36, 36, 0, 4, 0, 0,
0, 36, 36, 0, 4, 14, 4, 136, 8, 0, 33, 34, 1, 4, 0, 0, 32......

and send them to the SPI perhipheral in blocks of 1024 (limitation of this SPI Master)

then verify the checksum on AMP device

'''

import libraries to control the SPI and GPIO

import Adafruit_BBIO.GPIO as GPIO

from Adafruit_BBIO.SPI import SPI

import time

import os

define the haxfile name

haxfilename = "I483_chip_100_800pps_slv_2MHz-I480CLK.hax"

the hax file contains a checksum which the Amp device verifies and returns a status

the byte position where the checksum status is returned is defined here

status1pos = 29626

status2pos = 29627

status1 = 0x01

status2 = 0x58

Copyright © 2024 AnDAPT Inc. 8CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

configure the SPI pins

os.system("config-pin p9.17 spi_cs > /dev/null") # AMP SS

os.system("config-pin p9.18 spi > /dev/null") # AMP SI

os.system("config-pin p9.21 spi > /dev/null") # AMP SO

os.system("config-pin p9.22 spi_sclk > /dev/null") # AMP SCLK

toggle the config pin to reset the AMP device

this is optional, only needed when loading a

configuration into an already configured device

reloadconfig = True

#reloadconfig = False

if (reloadconfig) :

GPIO.setup("P9_23", GPIO.OUT) # AMP CFG

GPIO.output("P9_23", GPIO.HIGH)

GPIO.output("P9_23", GPIO.LOW)

GPIO.setup("P9_23", GPIO.IN) # release the CFG, its pulled low on board

try :

open the haxfile

fyle = open(haxfilename,"r")

print("opened: %s"%(haxfilename))

read the entire file

rawdata = fyle.read()

close the file

fyle.close()

replace any newlines in the file with spaces

haxdata = rawdata.replace("\n"," ")

split into a list of hex bytes

hexbytes = haxdata.split()

Copyright © 2024 AnDAPT Inc. 9CONFIDENTIAL 03/2/2024

AmP Device Configuration App Note

convert the (string) hex data to a list of integers

SPIdata = []

hexcount = 0

for byte in hexbytes :

SPIdata.append(int(byte,16))

hexcount += 1 # keep track of the number of bytes converted

connect to the SPI perhipheral

spi = SPI(bus, device)

spi = SPI(0, 0)

set to 10MHz

msh - Maximum speed in Hz

spi.msh = 10000000

set SPI mode

mode - SPI mode as two bit pattern of Clock Polarity and Phase [CPOL|CPHA]; min– 0b00 = 0, max– 0b11 = 3.

AMP device follows the 11 protocol

spi.mode = 0b11

spi.xfr() can only handle 1 to 1024 bytes per call

so take blocks of 0-1023 bytes to send to SPI

firstbyte = 0

txsize = 1023

bytesent = 0

bytesread = []

allbytesread = []

while (txsize) :

calculate the last byte to send

lastbyte = firstbyte+txsize

send the bytes & read the result

bytesread = spi.xfer2(SPIdata[firstbyte:lastbyte])
Copyright © 2024 AnDAPT Inc. 10CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

keep the read back status bytes for verify later

for b in bytesread :

if (bytesent == status1pos) : status1read = b

if (bytesent == status2pos) : status2read = b

bytesent += 1

move on to the next block of bytes

firstbyte = firstbyte + txsize

check that the end of the block to be sent is not past the end of list of bytes

if ((firstbyte + txsize) > hexcount) :

if it is, send only up to hexcount

txsize = (hexcount - firstbyte)

stop when firstbyte will go past the end of list of bytes

if (firstbyte > hexcount) : txsize = 0

report any error in opening the hax file

except FileNotFoundError as fnf_error :

print(fnf_error)

verify the AMP checksum

the hax file contains an error check request + checksum and status request near the end

ec 87 e5 00 <- error check + checksum

1b 00 00 00 <- status request

AMP chip should respond with "01 58" to this

if ((status1read == status1) & (status2read == status2)) : verify = "OK"

If not, verify has failed

else : verify = "FAILED"

report the programming result

print("DONE: %d bytes read, %d bytes sent, verify: %s" %(hexcount,lastbyte,verify))

Copyright © 2024 AnDAPT Inc. 11CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

release the SPI pins

os.system("config-pin p9.17 gpio > /dev/null")

os.system("config-pin p9.18 gpio > /dev/null")

os.system("config-pin p9.21 gpio > /dev/null")

os.system("config-pin p9.22 gpio > /dev/null")

4.0 Program the AmP chip(s) Using External SPI Chip (AmP is Master)
The AmP device simply receives valid input power and takes control of the external SPI memory chip to load its
configuration/ The AmP device acts as a SPI master and controls the external SPI as a slave. Master mode is ideally
suited for applications where the AmP device is independently providing power to the SPI chip.

Please note that for the mass production stage, the SPI memory chip can be pre-programmed beforehand board
assembly.

SCLK, CS, SO, SI, GPIO DONE, GPIO MODE, CFG pin configuration when AmP device is in Master mode

Serial Peripheral Interface (SPI) Flash Memory Selection Note

Copyright © 2024 AnDAPT Inc. 12CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

AnDAPT recommends generic 256k-bits or greater density SPI flash memory devices with a single supply. The
requirements are:

● Serial Peripheral Interface (SPI compatible)
○ Supports most common SPI Modes 0 or 3
○ Single supply (up to 3.3 V)
○ Command compatible with following SPI flash memories:

Adesto AT25DN256

Adesto AT25DF512C

Macronix MX25R8035F

Macronix MX25R512F

WinBond WX25X05CL

WinBond WX25X20CL

Micron M25P05-A

ISSI IS25LQ025B

ISSI IS25LQ512B

5.0 Powering Up Customer Board Using AmPLink USB Adaptor
Pre-production stage or evaluation/debugging stage might require programming the device or its corresponding
SPI flash memory counterpart.The AmPLink USB adapter provides the hardware interface between the AmP
device and the PC. It is used in conjunction with the AmPLink Control software to program and control the AmP
device and/or flash memory.

.

Copyright © 2024 AnDAPT Inc. 13CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

AmPLink Pinout

GND – 1 2 – CS2
AMP_SCLK – 3 4 – GND

AMP_SI – 5 6 – CS1
CS3 – 7 8 – CS4

AMP_Config – 9 10 – FLASH_RST
AMP_SO – 11 12 – GND

3.3V – 13 14 – AMP_SCL
FLASH_WP – 15 16 – AMP_SDA
AMP_ALERT – 17 18 – AMP_CTRL

AMP_EN – 19 20 – VBUS

AmPLink Functional Description

The AmPLink USB Adapter provides SPI, I2C and GPIO interfaces to the AmP evaluation board. The SPI bus is used to
control the AmP device and program both AmP and flash memory. The I2C bus provides control and monitoring of the
power supply functions of the AmP device. GPIO is used for evaluation board configuration and to support functions on
the SPI interface. All pins use 3.3V logic except where otherwise stated.

Pin Functional Description

SPI
AMP_SCLK Clock output

Hi-Z when not in use
AMP_SI MOSI output when communicating with AmP devices

MISO input when programming flash devices
Hi-Z when not in use

AMP_SO MISO input when communicating with AmP devices
MOSI output when programming flash devices
Hi-Z when not in use

CS1, CS2, CS3,
CS4

Chip select outputs
Hi-Z when not in use

I2C
AMP_SCL Clock output

Open drain with internal 2.2kΩ pull up resistor
AMP_SDA Bidirectional data line

Open drain with internal 2.2kΩ pull up resistor
AMP_ALERT alert signal input
AMP_CTRL control signal output

Configuration
AMP_EN AmP device enable output
AMP_Config Configures AmP device (see AnDAPT_AmP_Platform datasheet)

Copyright © 2024 AnDAPT Inc. 14CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

FLASH_WP Flash write protect output
FLASH_RST Flash reset output

Power
GND Connected to USB GND and shield
VBUS 5V output with 0.5A to 0.7A current limiting
3.3V 3.3V output with 0.5A current limiting

Reduced Pin Count AmPLink12 Adapter Extension

The AmPLink12 Adapter provides reduced pin counts for applications not requiring all the functionality of the 20-pin
interface. This enables the application to have a smaller footprint with fewer connections. Three Standard Interface
pinouts are recommended and supported as defined follows:

Standard Interface Total Pins SPI I2C Multi-Chip
Prog Support

Pin Pitch
(inch)

Cable Length
(inch)

AmPLink12 12 Yes Yes Yes 0.1 4

AmPLink12 Basic 6 Yes No No 0.1 4

AmPlink12 Basic Edge 6 Yes No No 0.1 4

AmPLink12, Basic, and Basic Edge Pinouts

Copyright © 2024 AnDAPT Inc. 15CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

AmPLink Images

AmPLink connection to program SPI flash

Once the AmPLink is connected to the SPI flash memory as shown above, the user can follow instructions in Section 6.0
to program the SPI flash memory using an offline AmPLink tool.

Copyright © 2024 AnDAPT Inc. 16CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

6.0 Program SPI Flash Memory Using AnDAPT’s AmPLink Tool (Online and Offline)

Online Programming Using WebAmP
For online programming of SPI flash using AmPLink tool and WebAmP, user requires to login to WebAmP and
navigate to the “AmPLink” tab-

Next, follow the instructions as shown:

Online Programming Using WebAmP R.D.
For online programming of SPI flash using AmPLink tool and WebAmP R.D., user requires to navigate to the
“Program AmP Chip” tab of WebAmP R.D. as shown:

Next, follow instructions as shown,

Copyright © 2024 AnDAPT Inc. 17CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

Offline Programming Using AmPLink Tool:

Instructions for offline programming of SPI flash using AmPLink tool:
1. Please connect the AmPLink adapter between PC and the board followed by supplying input voltage to the board.
2. Open native application:

3. Select device (Macronix MX25R8035F)
4. Load .Hex file
5. Press “Program & Verify”:

Copyright © 2024 AnDAPT Inc. 18CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

6. Confirm write to SPI:

7. Program 2nd or 3rd SPI (if needed)
1. Select deice (Macronix MX25R8035F)
2. Load hex file
3. Select CS2 (for 2nd chip), CS3 (for 3rd chip)

Copyright © 2024 AnDAPT Inc. 19CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

4. Unclick “Config Enable”
5. Press “Program & Verify”:

7.0 Other Options for Programming SPI Flash in Volume Production Environment
The SPI flash memory/memories can be programmed in three different ways in a volume production environment.

Copyright © 2024 AnDAPT Inc. 20CONFIDENTIAL
03/2/2024

AmP Device Configuration App Note

Revision History
Date Revision

08/16/2022 Initial version
8/14/2023 Revised version 2.0 with flowchart and SPI programming added
1/4/2024 Revised version with C code, offline programming instructions, tables, and connection instructions in

section 2, 3
1/9/2024 Added Python code, revised flowchart
3/18/2024 Details added about Master mode

On-Demand Power Management
www.AnDAPT.com

Copyright © 2024 AnDAPT Inc. 21CONFIDENTIAL
03/2/2024

http://www.andapt.com

AmP Device Configuration App Note

Trademarks
© 2022 AnDAPT, Inc., the AnDAPT logo, AmP, WebAmP, AmPLink, AmPScope and other designated brands included
herein are trademarks of AnDAPT in the United States and other countries. All other trademarks are the property of their
respective owners.

Copyright © 2024 AnDAPT Inc. 22CONFIDENTIAL
03/2/2024

